

MITIGATION OF CARBON DIOXIDE BY FURTHER ENHANCED

Gio Olivar, Fernando Coronel Nathaniel Macris
Department of Infrastructure Engineering,

SEQUESTRATION IN CONCRETE
Department of Infrastructure Engineering Department Departmen The University of Melbourne

Supervisor: Dr Xuemei Liu xuemei.liu@unimelb.edu.au

Sustainability Issues of Cement & Concrete

- What is Concrete?
- An artificial composite material
- o Most widely used construction material across the globe
- Made of Cement, Sand, Aggregates and Water

- · Why does concrete production make so much greenhouse gas?
- Accounts for 8% of the total global emissions every year
- o Limestone, clays and other materials are heated in a buge kiln at 1450°C
- o Kiln heats limestone, producing into calcium oxide and CO2, releasing into our atmosphere

CARBON

SECUESTRATION

How to reduce CO2 emissions:

- o Supplementary Cementitious Materials (SCMs) like fly ash and slag.
- o recycled aggregate can help make our concrete more sustainable.
- o Research into making concrete more sustainable is lacking that concrete producers will happily adopt that is both cost effective and good for the environment.

Carbon Sequestration, Concrete Carbonation, & Serpentine

Carbon sequestration is:

- o CO2 removed from the atmosphere and held in solid or liquid form.
- o Mineral Sequestration CO2 reacting with metal oxides (e.g., Mg2+ or Ca2+) to form stable carbonates (CO₃).

Concrete carbonation is:

o cement's hydration products reacting with CO2 to form carbonates:

$$Ca(OH)_2 + CO_2 \rightarrow CaCO_3 + H_2O$$

o Concrete naturally sequesters CO2, but not enough to offset total carbon emissions.

Serpentine is:

- o A green-coloured rock that is rich in Magnesium (Mg).
- Can form stable carbonates when reacting with CO₂:

$$\frac{1}{3} Mg_3 Si_2 O_5 (OH)_4 + CO_2 \rightarrow MgCO_3 + \frac{2}{3} SiO_2 + \frac{2}{3} H_2 O$$

- Can enhance concrete's natural CO₂ sequestration.
- o Antigorite polymorph has high compressive strength and density as a concrete aggregate.

· Advantages include:

- 1. Increasing sequestered CO2 in concrete can further reduce carbon footprint.
- 2. Maintain desired compressive strength of concrete while reducing the amount of cement used in concrete mix

Mortar Mix Design & Key Testing Procedures

- What is Mortar and why use it for testing serpentines effects as an additive in concrete?
- o Mortar is the combination of Cement. Sand and Water
- o Mix Ratio Cement : Sand : Water : Serpentine → 1 : 2 : 0.5 : x% Cement Mass
- o Serpentine is crushed into powder (10 microns) to maximise reactive surface area.
- o By using Mortar, we can save materials by reducing aggregate use and appertain our results

(0%-20% Cement mass)

- Two types of curing: Water Curing and Carbon Curing
- · What are the key testing procedures and what do they tell us?
 - o Compression Test: Indicates how strong our mortar is
- o Water Permeability Test: Tells us how our mix resists water penetration
- o Rapid Chloride Penetration Test: Stipulates the durability of our mix over time
- o Calorimeter Test: Indicates how our mix performs during hydration
- Phenolphthalein PH test: Visually demonstrates the carbonation depth inside our samples

Results

Carbon Sequestration Levels

20% normally cured sample

20% carbonated sample

Conclusions

.Compressive strength under normal curing is UNAFFECTED with an increase in % of serpentine. 2.Durability of cement-based specimens is **DECREASED** due to greater carbonation depths induced by the addition of serpentine.

3. Carbon sequestration of samples is INCREASED when % of serpentine is increased in samples. Cement hydration is **SLIGHTLY** impacted by the addition of serpentine in mortar specimens.