The Institution of **StructuralEngineers**

Structural use of fibre polymer composites

IStruct**E** Guide

Structural use of fibre polymer composites

Authors

G Böhm	Dpl Ing Architecture (Premier Composite Technologies)
C Bonney	MA (Fluency Business Group)
F Dionisi	MEng (National Composites Centre, UK)
N S Farmer	BSc (Hons) CEng FICE (Tony Gee and Partners LLP)
G Hardy	BA (Hons) MCIM (Fluency Business Group)
J G Henderson	BEng (Hons) CEng MICE (Atkins)
M Hobbs	MA MSc PhD CEng MRINA (Premier Composite Technologies)
K D Kansara	DEng BEng MS PGCE PhD CEng MIE MCIHT MInstNDT FHEA (National Composites
	Centre, UK)
W Kreysler	(Kreysler & Associates)
F A Martin	EngD CEng MIMechE (National Composites Centre, UK)
T J Royle	BSc DIS (Wizz Consultancy Ltd)
E Tromp	MSc (Royal HaskoningDHV)
H Wilson	MEng MSc CEng MIMechE (National Composites Centre, UK)

Reviewers

O P Gibbons	MEng CEng MICE (Arup)
A Mohamedseid	GIStructE (CWA)
T Mottram	BSc DSc PhD CEng FIStructE (University of Warwick)

Publishing

L Baldwin	BA (Hons) DipPub (The Institution of Structural Engineers)
J F Koernich	(JFK Publishing Services)
R Thomas	BA (Hons) MCLIP (The Institution of Structural Engineers)

Published by The Institution of Structural Engineers International HQ, 47–58 Bastwick Street, London EC1V 3PS, United Kingdom T: +44(0)20 7235 4535 E: mail@istructe.org W: www.istructe.org

First published (version 1.0) January 2023 978-1-906335-58-8 (print) 978-1-906335-59-5 (pdf)

© 2023 The Institution of Structural Engineers

The Institution of Structural Engineers and the Task Group which produced this *Guide* have endeavoured to ensure the accuracy of its contents. However, the guidance and recommendations given should always be reviewed by those using the *Guide* in light of the facts of their particular case and any specialist advice. Users should also note that the Institution periodically updates its guidance through the publication of new versions (for minor alterations) and new editions (for more substantial revisions) — and should ensure they are referring to the latest iteration. No liability for negligence or otherwise in relation to this *Guide* and its contents is accepted by the Institution, its servants or agents. **Any person using this** *Guide* **should pay particular attention to the provisions of this Condition.**

No part of this publication may be reproduced or stored in a retrieval system without prior permission from The Institution of Structural Engineers, who may be contacted at: 47–58 Bastwick Street, London EC1V 3PS, United Kingdom.

Acknowledgements

The Institution would like to thank Neil Appleton at the National Composites Centre for his work in developing the project brief and for the essential role he played in convening the authors who delivered this guidance.

Permission to reproduce the following has been obtained, courtesy of these individuals/organisations:

Front cover photo: 633 Folsom Street, San Francisco, California, USA. Gensler (photography: Jason O'Rear) Figures 1.1–1.4, 2.1–2.8 and 5.2: National Composites Centre, UK Figure 3.1: Liesbeth Tromp Figure 3.2: EPFL Figures 3.3 and 3.4: Fiberline Figures 3.5, 3.10, 3.41, 3.42 and 3.44: Royal HaskoningDHV (RHDHV) Figures 3.6, 3.8 and 3.9: AM Structures Figures 3.7, 3.36 and 3.37: Tony Gee and Partners LLP Figures 3.11 and 3.53: Martijn Veltkamp, FiberCore Europe Figures 3.12, 3.17 and 3.19: Emirates National Oil Company (ENOC) Figures 3.13–3.16, 3.18, 3.20–3.28: Premier Composite Technologies (PCT) Figure 3.29 (left): Snøhetta Figure 3.29 (right): Nic Lehoux Figures 3.30, 3.31 and 3.34: Kreysler & Associates Figure 3.32: Brett Young Figure 3.33 (left): Enclos Figure 3.33 (right): Tom Paiva Figure 3.35: Juliana Biggerstaff, Beau Kent, Erica Schuff, Stuart Sweeney Smith, Anna Teplitskaya, Matt Winters Figures 3.38, 3.39 and 3.40: East West Railway Company and EWR Alliance Figures 3.43: Delft Infra Composites Figures 3.45, 3.46, 3.47 and 3.48: Lionweld Kennedy Figures 3.49 and 4.1: Tom Royle, Wizz Consultancy Ltd Figure 3.50: Matt Durbin Associates Figure 3.51: Douglas Grey, Balfour Beatty Figure 3.52: Allan Curtis, Design & Display Structures Ltd Figure 3.54: Sarah Thomas, Haydale Graphene Industries Plc Figure 4.2: Warrington Fire Figures 4.3–4.6: Fire Testing Technology Figure 4.7: Specified Technologies Inc Figure 5.1: Source unknown

Tables 1.1–1.3, 2.1, 2.2 and 5.1–5.8: National Composites Centre, UK Table 3.1: East West Railway Company and EWR Alliance

Contents

Fo	reword		vii
Glo	ossary		viii
1	Introdu	ction and scope	1
1.1	Introduc ⁻	tion to fibre polymer composites	1
1.2	Brief hist	iory	1
1.3	Benefits		2
1.4	Limitatio	ns	3
1.5	Designin	g with composites	4
1.6	Materials	s for FPC	5
	1.6.1 F	Resins	5
	1.6.2 F	Fibres	7
	1.6.3 F	Fibre formats	8
	1.6.4 F	FPC material formats	9
	1.6.5 (Cores	9
	1.6.6 (Gelcoats and additives	10
2	Manufa	cturing and testing processes	11
2.1	Compos	ite manufacturing processes	11
	2.1.1 \	Net lay-up	11
	2.1.2 \$	Spray lay-up	12
	2.1.3 \	Vacuum resin infusion	12
	2.1.4 F	Resin transfer moulding (RTM) and high-pressure resin transfer moulding (HP-RTM)	13
	2.1.5 \	Net pressing	14
	2.1.6 F	Filament winding	14
	2.1.7 F	Pultrusion	15
	2.1.8 (Compression moulding	15
	2.1.9	Trimming and finishing	16
	2.1.10	Manufacturing process selection	17
2.2	Joining o	composites	18
2.3	3 Inspection and testing techniques		19

3	Desig	1	20
3.1	Design	principles and design guidance	20
3.2	Design for manufacturing and assembly		
3.3	Design	principles for materials/shape/geometry	22
	3.3.1	Moveable/hybrid structures	23
	3.3.2	Design for sustainability considerations	24
	3.3.3	Considerations for design choices	24
	3.3.4	Design guidance in the context of Eurocodes	24
	3.3.5	Consequences of design choices	24
3.4	3.4 Design factors related to durability		25
3.5	3.5 Comfort limits of pedestrian bridges		25
3.6	Approv	ral procedure	26

0	-	
Case	stua	lies

27

Case study 1:	ENOC Service Station of the Future – carbon fibre polymer composite canopy and trees	28
Case study 2:	Composite cladding and the San Francisco Museum of Modern Art	36
Case study 3:	Dover FPC footbridge	40
Case study 4:	East West Rail footbridge moulded structure	42
Case study 5:	Nelson Mandela Bridge: a 22.5m composite moveable bridge for heavy traffic	45
Case study 6:	Composite access structures — Victoria Substation and Worcestershire Parkway railway	
	station platforms	49
Case study 7:	Foryd Harbour Bridge	52
Case study 8:	Devon culvert rehabilitation	54
Case study 9:	Dorenell network poles	55
Case study 10:	Bristol University Fry Building, Voronoi Public Art	57
Case study 11:	Wilhelminakanaal lock gates	58
Case study 12:	National Grid composite transition piece	60

4	Fire, sı	moke and toxicity	61
4.1	Backgr	round	61
4.2	2 Specification		61
4.3	Performance		63
	4.3.1	Reaction to fire and fire resistance	63
	4.3.2	Reaction to fire (fire growth)	64
	4.3.3	Resistance to fire (fire compartmentation)	64
	4.3.4	Non-combustibility	64
	4.3.5	Ignitability	65
	4.3.6	Fuel load and heat release rate	66
	4.3.7	Flame spread, surface flammability and fire propagation	66
	4.3.8	Melting behaviour/flaming droplets	67
	4.3.9	Smoke and toxicity	67
	4.3.10	Thermal insulation	68
	4.3.11	Load-bearing temperature envelope	68

4.4	Comb	pinations of materials and design details	69
	4.4.1	Combining materials	69
	4.4.2	The fire face	69
	4.4.3	Joints, assembly and disassembly	69
	4.4.4	Penetrations through structures	70
4.5	Metho	ods of improving FST properties	70
	4.5.1	General principles	70
	4.5.2	Choosing FST solutions for your application	71
	4.5.3	Non-combustible composites	71
	4.5.4	Filled FST systems	72
	4.5.5	Intumescent systems	72
	4.5.6	Insulation barriers and cores	72
	4.5.7	Nanomaterials	73
4.6	Fire pe	erformance standards and regulations	73
4.7	Fire te	esting — determination of materials' properties	74
4.8	Mode	lling, simulation and predictive behaviour	75
5	Envir	onmental impact	76
5.1	Introd	uction	76
5.2	Impac	ot by material type	76
	5.2.1	Fibres	76
	5.2.2	Textiles	77
	5.2.3	Polymer resins and adhesives	77
	5.2.4	Cores	77
5.3	Embo	died carbon emissions	78
5.4	Bio-de	erived and recycled feedstocks	80
	5.4.1	Recycled fibre	80
	5.4.2	Natural fibres	81
	5.4.3	Biopolymers	82
5.5	Comp	posites at end-of-life	84
	5.5.1	Life extension and reuse	84
	5.5.2	Recycling of composites	84

References

87

Foreword

What we now call 'advanced composites' utilise highly-engineered straw made of synthetic mud, glass fibres, carbon fibres, aramid, etc., and synthetic resins to create what are today the highest strength-to-weight ratio materials commercially available. The worldwide composite industry is worth almost \$50 billion and now spans every sector of manufacturing from aerospace to mining; pushing capabilities far beyond non-composite systems.

Meanwhile the construction industry, the largest of them all, has barely acknowledged this 21st Century material. There are many reasons for this — one is the inherent and justified conservatism of our industry. Another is that our means and methods have traditionally taken little account of weight, which is one of the main advantages of composites. In addition, the material's mechanical properties can be 'designed into' literally hundreds of possible combinations of fibre type, weight, direction, and resins; which makes them complex. Finally, building codes and standards internationally, do not make provision for easy adaptation of new material systems.

However, all that is changing. The benefits of fibre polymer composites (FPCs) are finally being discovered. Lightweight means less material and less material means lighter weight systems. Inefficient buildings are being replaced with more opaque façades, and FPCs' extremely low coefficient of thermal conductivity is being used to minimise thermally inefficient aluminium curtain wall frames. Elevators are reaching higher heights with carbon fibre cables; concrete can use FPC rebar instead of steel. Tall buildings are amplifying the importance of lightweight systems, and earthquake codes are becoming more sophisticated and widespread. Engineers will increasingly see these materials specified or designed into buildings and infrastructure systems. Those who are familiar with their unique properties will be ready. Those who are not may find themselves trying to apply traditional material assumptions, leading to inefficiency or worse.

Structural use of fibre polymer composites not only provides an introduction to these materials, but offers a road map for engineers and other construction professionals to follow as they grapple with yet another challenge. As usual, early adapters will reap the greatest reward, provided they do so with their eyes wide open and their knowledge base founded on facts and experience.

Bill Kreysler Kreysler & Associates