Inclusive design for structural engineers
Inclusive design for structural engineers
Authors

A Azzouz British Academy Research Fellow (University of Oxford)
J Beard BA MA PhD (Mott MacDonald)
D Bowmer MEng CEng MICE (Mott MacDonald)
J Carpenter RA AIA LEED AP (Verona Carpenter Architects)
P Catterall MA PhD FRHistS (University of Westminster)
R De’Ath MEng CEng MIstructE MICE (Marbas Group Limited, formerly Arup)
T de Hoog CEng FIstructE (Thornton Tomasetti)
S Dhawan BA JD (The Institution of Structural Engineers)
P Digpal MEng (Mott MacDonald)
J Francisco AICP ENV SP LEED GA (Arup)
T Hargreaves MEng CEng MICE (Mott MacDonald)
M Horn BA(Hons) NRAC (Consultant)
H Kane MSc BA NRAC Consultant (Access Included)
N Kent BSc (Hons) DipM (Astor Bannerman)
B Knights BSc (Hons) MArch PGDip RIBA CA (Pritchard Architecture)
K Leung MEng CEng MICE (Buro Happold)
W McAvoy BSc (Mott MacDonald)
J McLaughlin MA APMQ (Heathrow)
M-Y Man Oram MA NRAC ISEMOA CPABE APMP IOSH (Arup)
A Pottinger CEng MIstructE (Buro Happold)
N Raffel Torrebiarte MEng (Hons) (Buro Happold)
C J Refoy CEng MIstructE (Retired)
K Rochard MEng CEng MIstructE (Historic England)
A Rolf MEng CEng MIstructE CARES (Mott MacDonald)
Z Rose (Arup)
E Scott MEng CEng MICE (Mott MacDonald)
S Shuttleworth MA MRes PhD (Mott MacDonald)
J Simpson ARB RIBA NRAC (Jane Simpson Access Ltd)
T Sully BSc (Hons) PGDip (Mott MacDonald)
E Warner MBE (Motionspot)
C Whapples BSc (Hons) CEng FIstructE FICE (Stripe Consulting)
Acknowledgements

The Institution wishes to thank Jennifer Carpenter (Verona Carpenter Architects) for the time and consideration she gave to ensuring that neuro inclusion was suitably represented in this guidance. As an architect, her extensive knowledge on the subject of Architecture for Neuro Diversity (captured in Chapter 2) and its applicability to structural engineers, serves to illustrate the importance of collaboration and knowledge-share between the collective professions responsible for the ‘built environment’.

The Institution would also like to thank the following individuals/organisations for their permission to reuse the following imagery:

Figure 1.1: Chris Refoy
Figures 1.2–1.4: Motionspot Ltd
Figure 1.5: Solibri Inc
Figure 2.1: Verona Carpenter Architects
Figure 2.2: Verona Carpenter Architects
Figure 2.3: Onzon/Shutterstock.com
Figure 2.4: ©Richard Bryant/Arcaid Images
Figure 2.5: Antonio Chico/Shutterstock.com
Figure 2.6: Tony Barwell/dRMM Studio
Figure 2.7: View Pictures Ltd
Figure 2.8: CC BY-SA 3.0 DEED Femtoquake
Figure 2.9: Image used under license from Shutterstock.com
Figure 2.10: Tupungato/Shutterstock.com
Figure 2.11: Michael Goodman
Figure 2.12: marcobrivio.photography/Shutterstock.com
Figure 2.13: Thornton Tomasetti/Lorenzo Sanjuan
Figure 2.14: Betti Matteo/Shutterstock.com
Figure 2.15: Hikamata Kapatsa courtesy of Selldorf Architects
Figure 2.16: isweetynat/Shutterstock.com
Figure 2.17: Ronald Rael & Virginia San Fratello/Emerging Objects
Figure 2.18: Gastas ©123RF.com
Figure 2.19: Frank Fang/Thornton Tomasetti
Figure 2.20: Thornton Tomasetti
Figure 2.21: Olson Kundig + Transsolar
Figure 2.22: Adrian Gaut
Figure 2.23: Hufton + Crow
Figure 2.24: Verona Carpenter Architects
Figure 3.1: RF._.studio on Pexels
Figure 3.2: Aditya Chinchure on Unsplash
Figure 3.3: Note Thanun on Unsplash
Figure 3.4: Peter Bennettst (photographer)/ Courtesy of Lark Industries
Figure 3.5: Paul Carstairs/Arup
Figure 3.6: Darya Sannikova on Pexels
Figure 3.7: Access and Inclusive Environments/Arup
Figures 5.1–5.5, 5.9–5.10: Mott MacDonald
Figure 5.6: Reproduced from www.inclusivedesigntoolkit.com with permission from Cambridge University Inclusive Design Group
Figure 5.7: Construction Innovation Hub
Figure 5.8: Graeme Eyre/Shutterstock.com
Figure 7.1: Arup
Figure 7.2: Mick Haupt on Unsplash
Figure 7.3: Clark Van Der Beken on Unsplash
Figure 7.4: Carlos Barria on Pexels
Figure 7.5: Daniel Imade/Arup
Figure 7.6: Arup
Figure 7.7: Centre for Ageing Better on Unsplash
Figure 7.8: Tom Wheatley on Unsplash
Figure 7.9: Elizabeth Villalta on Unsplash
Figure 7.10: Simon Migaj on Unsplash
Figure 7.11: Charles Parker on Pexels
Figure 7.12: Michelle Horn
Figure 7.13: Aveso
Figure 7.14: Astor Bannerman
Figure 7.15: Astor Bannerman
Figure 7.16: Aveso
Figure 7.17: James Francisco/Arup
Figures 8.1–8.3: Stripe UK
Figure 9.1: Rachael De’Ath/Arup
Figures 10.1–10.4: Andrew Rolf/Mott MacDonald
Figures 10.5–10.6: White Arkitekten
Figures 11.1–11.3: Kenneth Leung/Buro Happold
Figures 11.4–11.6: Mott MacDonald
Figures 12.1–12.3: Buro Happold
Figures 12.4–12.5: Sports Grounds Safety Authority
Figure 13.1: Feilden Clegg Bradley Studios
Figure 13.2: Feilden Clegg Bradley Studios
Figure 13.3: Integral Engineering Design
Figure 13.4: Feilden Clegg Bradley Studios
Figure 13.5: Joe Low
Figure 13.6: Joe Low
Figure 13.7: HCC Architects
Figure 13.8: HCC Architects
Figure 14.1: Habinteg
Figure 14.2: Emma Lewis
Figure 14.3: Jacquel Runnalls
Figure 14.4: Emma Lewis
Figure 14.5: Emma Lewis
Figure 14.6: Simon Kennedy
Contents

Acknowledgements iii
Foreword ix
Introduction xi
The Inclusive Design Overlay to the RIBA Plan of Work xiii

Part 1

1 The importance of inclusive design
1.1 Introduction 3
1.2 Disability and inclusivity 3
1.3 Building use 3
1.4 Legislation and regulation 5
1.5 Initial design 6
1.6 Detailed design
1.6.1 Lifts 12
1.6.2 Stairs 13
1.7 Fire protection and safe evacuation 13
1.8 Accessibility issues and design 15
References 16

2 Designing for neuroinclusion 18
2.1 Introduction 18
2.2 Understanding the relationship between structure and sensory response
2.2.1 Sight: visual material stimuli, patterns and lines, light and shadow, legibility and rhythm, and biophilia 20
2.2.2 Sound: form, surface, reverberation, vibration and isolation 23
2.2.3 Touch: materiality, texture, temperature and safety 25
2.2.4 Proprioception and the vestibular system: movement, action, location, balance and steadiness 28
2.2.5 Smell: material, ventilation, containment and biophilia 29
2.3 Designing for adaptability and flexibility 31
2.4 Concept design to project delivery and post-occupancy 31
2.5 Conclusion 31
References 32

3 Preparation and briefing 33
3.1 Introduction 33
3.2 The project brief 33
3.3 The inclusive design strategy 38
3.4 The cost of inclusive design 38
3.5 The project team 39
3.6 Stakeholders and user groups 39
3.7 Early awareness of requirements and considerations 44
References 50

4 Procurement 51
4.1 Introduction 51
4.2 The role of structural engineers 51
4.3 Contracts 52
4.4 The impact of poor procurement 53
References 54
5 Manufacturing and construction
5.1 Introduction
5.2 Premanufactured construction solutions
 5.2.1 Design for Manufacture and Assembly (DfMA)
 5.2.2 Modern methods of construction (MMC)
 5.2.3 Product Platforms
5.3 Designing to ISO/TC 59/SC 19
5.4 Inclusive ways of working and delivery
5.5 Maximising value and inclusivity
 5.5.1 Construction sites
 5.5.2 Manufacturing sites
5.6 Relationship with (and impact on) the community
5.7 Delivery of inclusive outcomes
References

6 Commissioning, practical completion and handover
6.1 Introduction
6.2 The project commissioning team
6.3 Project acceptance
6.4 Project handover
 6.4.1 Feedback and follow-up
6.5 Summary
References

Part 2

7 Landscape and the public realm
7.1 Introduction
7.2 Public safety
7.3 Access and approach
7.4 Circulation
7.5 Materials
7.6 Multi-sensory experience
7.7 Security
7.8 Public facilities
 7.8.1 Changing Places toilets
7.9 Community impact
References

8 Public multi-storey and underground car parks
References

9 Educational structures
9.1 Introduction
9.2 Design considerations
 9.2.1 Structural elements
 9.2.2 New lifts
 9.2.3 Stairs
 9.2.4 Floor levels
 9.2.5 Landscaping
 9.2.6 Structural load
 9.2.7 Balustrades
 9.2.8 Building services
 9.2.9 Underfloor heating
 9.2.10 Partition walls
 9.2.11 Materials
References
10 Healthcare structures
10.1 Introduction 107
10.2 The role of structural engineers 108
10.3 The structural grid 108
10.4 Accessibility 109
10.5 Structural load 109
10.6 Comfort 109
10.7 Materials 110
10.8 Compliance 111
10.9 Flexibility 111
10.10 Sustainability 112
10.11 Stakeholder engagement 112
References 117

11 Bridges
11.1 Introduction 118
Reference 125

12 Stadia
12.1 Introduction 126
12.2 Understanding inclusive design 126
12.3 Influencing inclusive design 127
 12.3.1 Overall structural form 127
 12.3.2 Grid spacing and row depth 127
 12.3.3 Tier gradients 127
 12.3.4 Acoustics 128
 12.3.5 Ramps and slopes 128
 12.3.6 Natural light 128
 12.3.7 Materials 128
 12.3.8 Innovation 128
 12.3.9 Back of house 132
 12.3.10 Retrofit 132
 12.3.11 The 365-days-a-year facility 132
12.4 Inside the bowl 137
 12.4.1 Structural dynamics 137
 12.4.2 Inclusive seating 137
 12.4.3 Sightlines 138
12.5 Outside the bowl 140
 12.5.1 Concourses 140
 12.5.2 Facilities and concessions 141
12.6 Entering and leaving the stadium 141
12.7 Conclusion 141
References 141

13 Historic structures
13.1 Introduction 143
13.2 Accessibility and inclusion versus historical significance 143
13.3 Initial considerations 143
 13.3.1 Stepped approaches and vertical circulation routes 144
 13.3.2 Lift provision 144
 13.3.3 Circulation routes 144
 13.3.4 Door widths 144
 13.3.5 Safe evacuation 144
 13.3.6 Car parks 145
 13.3.7 Toilets 145
 13.3.8 Services 145
13.4 Mitigation measures 145
References 145
14 Residential structures (including private car parks) 155
 14.1 Introduction 155
 14.2 Legislation, regulation and best practice 155
 14.3 Housing types 156
 14.4 Site development 156
 14.4.1 Car parking 159
 14.4.2 Storage for cycles and mobility scooters 159
 14.4.3 Routes and approaches 159
 14.4.4 Communal circulation 160
 14.5 Individual dwellings 160
 14.5.1 Entrances 161
 14.5.2 Internal circulation 161
 14.5.3 Stairs 161
 14.5.4 Bedrooms 161
 14.5.5 WCs and bathrooms 163
 14.5.6 Windows and glazing 163
 14.5.7 External space 163
References 169
Foreword

At some time in our lives, all of us will require and use accessibility adaptations in relation to the built environment. This may include our time as a baby and toddler, and as we move into older age, through illness or disability.

It is morally wrong that the design of our buildings and infrastructure should be inaccessible to, or have reduced accessibility to anyone, regardless of personal circumstance or identity. Design to facilitate accessibility and inclusion involves negligible cost if considered at design stage so there is no excuse for not including it as a matter of course.

I have heard arguments that accessibility and inclusive design is solely the purview of architects, but all members of the design team have influence. I am delighted that this book shows us how we should use that influence.

John Nolan CBE
Past-President of The Institution of Structural Engineers and Chairman of Nolan Associates
Introduction

In a world where many buildings and spaces exclude a significant proportion of our population, collective action is required to remove the barriers that hinder access, present disadvantages for or discriminate against people with protected characteristics such as age, disability, gender, neurodiversity, sex, race, ethnicity, religion, pregnancy and more, so that everyone feels safe, welcomed and valued. Inclusive design therefore needs to be at the heart of all stages of the planning and construction process, and is the responsibility of all built environment professionals.

This book offers guidance on how structural engineers can make a positive contribution to the inclusive design process. Part 1 achieves this by advocating the use of the Inclusive Design Overlay to the RIBA Plan of Work, and drawing on a number of small case studies. Part 2 focuses on eight principal built environment sectors, drawing on more in-depth case studies to demonstrate the benefits of incorporating inclusive design principles into structural design projects from the outset.

As one of the first specialist consultants involved in a building project, structural engineers have a unique opportunity to influence the design of the built environment, ensuring the safety of the public realm, as well as how people experience buildings and spaces. By considering inclusive design from the start, and challenging the wider team at each stage of design and construction, they can help to create buildings and spaces that are equitable for everyone.

Inclusive design does not have to add significant cost to a project. If considered from the outset it can provide a positive return on investment through increased footfall and revenue for businesses, along with the ability to recruit and retain employees from a broad and more diverse talent pool.

All too often budgets for projects are set to meet minimum regulatory standards, and not best practice or legislative responsibilities. While local building regulations and international best practice documents are important ‘guard rails’, they only provide a baseline, and in many cases these standards do not deliver buildings and spaces that are inclusive for everyone. As an example, the statutory guidance on access in international building codes focuses mainly on providing access for wheelchairs. However, in the UK, only 8% of disabled people are wheelchair users. Structural engineers therefore need to think about what decisions they can make to design buildings that suit not only wheelchair users, but also the 92% of people with other physical, sensory or cognitive disabilities, such as neurodiversity.

As this book outlines, truly inclusive buildings and spaces can be delivered if design teams and specialist consultants think beyond minimum standards and engage and involve building users — stakeholders, disability groups and other under-represented groups — in a participatory, co-design approach.

Designing more inclusive buildings and spaces not only produces appealing environments for all; it is also more sustainable, avoiding the need for expensive and environmentally damaging retrofits and adaptations at a later date.

The book is packed full of information that structural engineers can put into practice to positively impact the lives of building users now and in the future.

References