Recommended Reading

The structural engineer's responsib

Short Reads

Turning Climate Commitment into Action Sustainability for bridge engineers part 1 Sustainability for bridge engineers part 2

Videos

Structural Engineers Declare: what it means for structural engineers Structural Engineers Declare: what it means for IStructE

Key climate emergency actions for engineers and the Institution

Longer Reads

Design for zero External Content

7. Project write-ups

RICA - climate-positive design using locally sourced materials

Nature's invention: The Enterprise Centre, University of East Anglia
Reuse, build less, build lean: low-carbon design for 22
Richesports Lender

Video: MASS Design Group's Impact Driven Approach to Design & Construction in Africa

Video: Whole life carbon, targets, and project examples

6.1 Your role

Longer Reads

6.2 Policy ←

Longer Reads

External Content

Recommended Reading

LETI Consultation on a definition for net zero carbon

LETI Royal Academy of Engineering: Decarbo

LETI Developing policy for a net zero capital

RIBA Built for the Environment repor

Recommended Reading

Don't let climate grief stop you taking action

Structural engineering innovation for a zero-carbon world: an R&D agenda to match the carbon budget

Own your agency: what part will you play in the climate revolution

Part Z: A proposed amendment to UK Building Regulations 2010

Policy measures affecting the sustainability of structural engineering designs

Longer Reads

Structural Materials by 2050 (Structural Engineering Institute)

1.1 Sustainability in structural engineering

Recommended Reading

Climate jargon buster

IABSE Henderson Colloquium 2020 Low-carbon outcomes in the built environment

Short Reads

Carbon trading

External Content

UKFIRES, - Absolute Zero

environment

A short guide to carbon offsetting

David Attenborough's A Life on our Planet

Ashby, M.F. et al. (2016) Materials and sustainable

1.3 Beyond the built

1. Get Informed

Sustainability

Guidance

Videos

Designing with nature Engineering for the future, a resilience-based approach

A targeted approach to the UN Sustainable SMART Healthcare Facilities

External Content

Design Council - Beyond Net Zero Halliday, S. (2019) Sustainable constr ed. Abingdon: Routledge. [E-book McLean, W. and Silver, P. (2021) En

Braham, A. and Cassilas, S. (2021) Fundamentals of sustainability in civil engineering. 2nd ed. Boca Raton, Florida: CRC Press. [E-book] CIBSE (2020) Sustainability. 2nd ed. London: CIBSE. (CIBSE Guide, L).

1.2 Sustainability in the built environment

7. Project

Write-ups

Recommended Reading

How to calculate embodied carbo Software: The Structural Carbon Tool

Short Reads

A brief guide to calculating embodied carbo An introduction to The Structural Carbon Tool

Minimising Energy in Construction (MEICON) overview lecture

Longer Reads

ng carbon - a small practice perspective Seeing the bigger picture – industry emissions, your project and the performance gap Embodied carbon assessment using a dynamic cl model: Case-study comparison of a concrete, steel and imber building structure (Structures journal)

RICS WLC assessment

Deriving embodied carbon factors from scratch

Webster, M.D. (ed.) (2017) Structural materials and global climate: a primer on carbon emissions for structural engineers. Reston, VA: ASCE. [E-book]

CO

2. Low Carbor

3. Lean Design

External Content

Trusson, M. (2020) Whole life costing for sustainable building. Abingdon: Routledge. [E-book]

2.1 Embodied carbon calculations **Benchmarking**

Recommended Reading

Setting carbon targets: an introduction to the proposed SCORS rating scheme

Short Reads

Embodied CO2 of structural frames Capital vs lifecycle vs whole-life costs

Whole life carbon, targets, and project examples

Longer Reads

We signed the climate declaration – now what? Lessons from counting carbon A comparative embodied carbon assessment of

commercial buildings. Carbon footprint benchmarking data for building

Carbon targets for bridges: a proposed SCORS-style rating scheme

External Content LETI Embodied Carbon Target Alignment LETI Embodied Carbon Primer

2.2 Targets/

Recommended Reading

Video: Carbon in concrete, steel and timber How can we reduce the embodied carbon of structural concrete?

Short Reads

Blog: Specifying sustainable concrete Marginal gains – carbon in concrete buildings Recycled and secondary aggregates in concrete

Fiberglass rebar: a proven and sustainable technology for concrete infrastructure

External Content

Concrete Centre: How to specify lower carbon concrete Concrete Centre: Specifying Sustainable Concrete Concrete Centre: UK Concrete and Cement Industri Roadmap to Beyond Net Zero

2.3 Concrete

Short Reads

Recommended Reading Video: Carbon in concrete, steel and timber Timber and carbon sequestration

Longer Reads

Timber Engineering Notebook (16 articles) Design solutions for efficient timber buildings Designing timber buildings for longevity

External Content

2.5 Timber

Videos Carbon on site and in bridges

tructural engineering with bamboo

Novel materials series: Designing with rammed earth

Longer Reads

3.1 Safety and Resilience

Recommended Reading Structural safety when designing lear in the climate emergency

Short Reads

RICA - climate-positive design using locally sourced materials

2.6 Other materials

Recommended Reading Making low-carbon material choices

Short Reads

How to carry out a carbon impact assessment of a structural consultancy office

Typical operational energy and carbon figures for buildings Emissions trading schemes
How to read an EPD: basics for the structural engineer

Recommended Reading

Short Reads

Longer Reads

2.4 Steel

Video: Carbon in concrete, steel and timber

Developing a low-carbon economy for steel

Chatham House: Achieving Net Zero in the Steel Sector

SCI P427 Structural steel re-use: Assessment, testing, and design principles

SCI P428 - Guidance on Demountable Composite Construction Systems for UK Practice

SCI: Sustainability Guidance Webnage SCI: The whole story from cradle to grave

2.7 Carbon wider reading

3.2 Optioneering and Optimisation

Recommended Reading

Design for zero

Short Reads

Lean design: 10 things to do now

Videos

Layout optimisation of structures: doing more with less

Lean design principles and implementation

Longer Reads

What do we mean by efficiency? A holistic approach to reducing embodied carbon Rationalisation versus optimisation - getting the balance right in changing times Design solutions for efficient timber buildings

Short Reads

4.5 Other

Blog: Minimising waste in design and construction

Longer Reads

Designing timber buildings for longevity

External Content

4.4 Offsite manufacture

compendium. Part 18: Non-invasiv

Conservation compendium. Part 7: Imposed load in historic buildings: assessing what is real Conservation compendium. Part 16: The monitoring of movement in historic buildings and structures

Conservation compendium. Part 17: Filler-joist floors – development, capacity and typical defects

quantitative appraisal of historic floor structures

Managing Health & Safety Risks (No. 32): dentifying and managing contaminated ground

Longer Reads

4.3 Conservation

Longer Reads

Modernising design for zero waste

Zoom in to click the links and use Ctrl+F to search

5.1 Building Less & Standardisation Recommended Reading

Short Reads

How can we create an engineering industry while building nothing? Time for a structural change?

Videos

Longer Reads

A weight off your mind: Floor loadings and the climate emergency

Please Note: These resources are highlighted to the reader for their potential value/interest. Some have been produced by third parties. The Institution of Structural Engineers does not necessarily endorse (nor is it responsible for) any statement or opinion expressed within these.

5.2 Effecting Change

Recommended Reading

Longer Reads

6. Get Involved

Racing to zero: isn't it time you committed to emission reduction targets

Persuasion and influence in a climate emergency Profile: Jo da Silva

External Content

LETI Client Guide for Net Zero Carbon Buildings

Video: Questioning and influencing the brief

ring carbon - a small practice perspective

5. Influence the Brief

Interview: Dr John French (the client's perspective)

Videos Video: The brief, policy and risk/resilience

LETI Proposals for Energy Policy

4.1 Circular economy

4. Zero Waste

Recommended Reading Applying circular principles to the design process

Short Reads

Enabling steel's circular economy potentia Design for deconstruction

Practical application of circular economy principles

Video: Circular economy and the future of the engineer **External Content**

SCI P427 Structural steel re-use: Assessment, testing, and design principles

SCI P428 - Guidance on Demountable Composite Construction Systems for UK Practice The Ellen MacArthur Foundation website

Cheshire, D. The Handbook to building a circular economy (2021).
London: RIBA Publishing Baker-Brown, D. (2017) The Re-use atlas: a designer's guide toward the circular economy. London: RIBA Publishing. [E-book]

Circular Economy Guidance for Construction Clients – UKGBC

External Content

4.2 Reuse of

Short Reads

Longer Reads

of an existing building

existing structures

A short guide to reusing foundations

Recommended Reading

Video: The principles of reusing existing buil

Blog: 8 vertical extensions you should know about

P427 Structural steel re-use: Assessment, testing,

Analysing existing structures: a brief introduction

Strengthening of existing buildings: an introduction

Reuse, build less, build lean: low-carbon design for 22 Bishopsgate, London

An introduction to refurbishment. Part 1: Identifying opportunitie at the feasibility stage

Triton Square, London – low-carbon development through reuse

What can you do if you are convinced a structure will work but can't prove it to code?

rtical Extensions: Technical Challenges and carbon impac

Understanding existing buildings – five studies to complete before design work starts