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The Elastic Lateral Stability of Trusses 
by M. R. Horne, Sc.D., A.M.I.C.E. 

Synopsis 
The article gives an approximate  analysis, using 

the energy  method,  for the elastic stability  out of 
their  plane of trusses  with  outstanding compression 
chords, the tension  chord being held in position. 
Previous discussions of this problem have  usually 
considered it in  terms of the  stability of the com- 
pression chord as a member subjected to various 
elastic  restraints. In the present treatment,  the 
truss is considered as a whole, account being taken 
of the flexural and torsional rigidities of all the mem- 
bers, and of partial  restraint of the tension chord 
against  twisting. The analysis is  interpreted  in 
relation to a number of common arrangements of 
vertical and diagonal web members. The analysis 
is  derived  for a truss in which the compression chord 
is of uniform section, carrying a uniform thrust, 
but  the use of some of the results as  approximate 
criteria of stability for non-uniform conditions is 
also discussed. 

Introduction 
This  article  deals  with  the  lateral  stability of an 

elastic  plane  truss with parallel chords, such as  that 
shown in Fig. 1 (a). The  analysis  applies to  any 
arrangement of vertical and diagonal web members, 
the only  restriction being that no account is taken 
of intersections  within the web. The  truss  is  sub- 
jected to  any combination of uniform bending moment 
and overall axial load. The compression chord  (AB 
in Fig. l(a)) sustains an axial load P and is laterally 
supported  only  by  the web members of the  truss, 
except a t  A and B, where it is assumed to be restrained 
against deflection out of the plane ABCD. The chord 
CD may  carry  any  axial load Q (tensile or compressive), 
and is  laterally  supported at  the panel  points. Allow- 
ance  is  made  in the analysis  for  elastic  restraints 
against  twisting of the chord CD about  its longi- 
tudinal  axis,  these  restraints being applied at panel 
points. Although this simplified form of loading 
is assumed, some of the  results  may be applied approxi- 
mately to a truss more realistically loaded as shown 
in Fig. l(b) provided the vertical loads are applied 
to  the lower chord only, and  the web members do 
not  sustain compressive axial loads which are a high 
proportion of their  axial loading capacities as pin- 
ended struts.  The analysis  is of particular  interest 
in  relation to trusses composed of tubular members, 
but is not  restricted to such cases. The  joints  are 
all assumed to be rigid, and  the members prismatic 
between panel  points.  For the sake of analysis it is 
also assumed that  the chords  are  each of uniform 
section, while each set of web members (for example, 
the verticals) is of uniform section throughout  the 
truss. 

When the  axial load P in the compression chord 
reaches a critical  value, the  truss buckles laterally 
as shown in Fig. 2(a).  The buckling mode may  be 
in a single half-wave, or in a series of almost  equal 
half-waves. The compression chord is acted upon by 
a series of torques,  moments and shear forces from 
the web members. 
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( b) 
0 LATERAL RESTRAINTS. 

TRUSS UNDER (a) UNIFORM THRUST AND TENSION 

(b )  VARYING BENDING MOMENT. 

FIG. 1 

' In most treatments of this problem, the  stability 
of the compression chord  is  investigated by assuming 
that  the  restraints from the web members may be 
represented by  the action of springs lying  in  a hori- 
zontal  plane, as shown in Fig. 3(a). Bleichl suggests 
methods  for solving this idealisation of the problem, 
allowing for changing axial load and cross-section 
of the compression chord and variations in  the spacing 
and stiffness of the springs. For  the simpler case 
of a uniform axial load in a chord of uniform  section, 
with  equal spacing and stiffness of the springs, an 
early  approximate solution by Engesser2 gives good 
results. If the springs  in Fig. 3(a) require a force 
k to produce unit deflection, and  the springs are 

TRUSS IN THE BUCKLED STATE. 
FIG. 2. 
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I TABLE 1 I 
MEMBER FLEXUUAL 

RIGIDITY. RIGIDITY 
TORSIONAL 

I I 

TENSION BOOM 

COMPRESSION BOOM 

VERTICALS 
DIAGONALS 

~~~ ~ ~ ~ ~ ~ _ _ _ ~  ~ 

B = ( B ~ +  13~) s in3+ 
c = (c, + c5) sm3+ 
A = { FLEXURAL STIFFNESS OF TPANSVERSL 

MEMBER3 A T  EACH LOWER PANEL  POINT. } 

spaced at  intervals S,  Engesser replaces the springs 
by a  continuous  elastic medium which resists  unit 

k displacement by a force of - per unit  length of the 

chord, as shown in  Fig. 3(b). It is then  found that 
the chord buckles in half-waves of length I where 

S 

. .  

in which EI  is the flexural rigidity of the chord for 
bending out of the plane of the  truss.  The critical 
value of the  axial load P is 

Engesser showed experimentally that equation (2) is 

remarkably  accurate provided - > 1 -8 and  this  has 

been confirmed theoretically by Bleichl. Equation 
(2) has been used extensively for bridge trusses in 
which the web members in Fig. (1) are  almost com- 
pletely  direction fixed at their  feet.  The Engesser 
solution assumes that ttlc chord is infinitely long and 
that  the ends are fixed against  lateral dcflcction with 
sufficient rigidity  for the buckling load not  to bc 
reduced by buckling at  the ends.  The effect of com- 
pletely free ends  has been discussed by Zimmermann3, 
while  Chwalla4 considers ends of finite rigidity.  The 
case of chords of finite length in a continuous elastic 
medium, but with  ends fixed against  lateral deflection, 
has been discussed by Timoshenko5, who deals not 
only  with uniform axial loads in the  chord,  but also 
wit h  axial loads varying parabolically. 

Reference to Fig. 2 shows that  the compression 
chord in a truss is not  only  restrained  against  lateral 
deflection (in  direction OX), but  that  the chord mem- 
bers also provide  restraint  against  the  twisting of the 
chord about  its longitudinal  axis  (parallel to 02). 
The rotation of the chord at panel  points  about  axes 

I 
S 

parallel to OY is also partially  restrained]  this  restraint 
being due to twisting  in the vertical  chord members 
and  to bending and twisting in the diagonal members. 
The buckling of a uniformly compressed, uniform 
chord member with  equally spaced lateral  and  rota- 
tional  restraints  has been discussed by Budiansky 
et ale. For  the compression chord in Fig. 2, this 
treatment would allow for restraints at panel  points 
against deflections parallel to OX and for restraint 
against  rotation  about  axes parallel to OY, but would 
ignore the effects associated with the twisting of the 
chord about  its own longitudinal  axis. The effect 
of bending moment  in the vertical members, and 
their  interaction  with  the  twisting of the chord  has 
been discussed by Hrennikoff‘  who, however, ignores 
some of the  other  restraints. 

An exhaustive study of the problem of buckling of 
chords  in  pony  trusses has recently been conducted 
by Holt8. It will  be appreciated that a complete 
solution is  extremely involved, and Holt’s treatment 
is too complicated for  practical use. In a review of 
theoretical and experimental work on the buckling 
of top chords in pony  trusses, Handag comes to  the 
conclusion that  the simple formula of Engesser gives 
results as good as any for the collapse loads of actual 
trusses, and  that  the complications of most treatments 
are  not worthwhile. This  is  perhaps  not  surprising 
in view of Bleich’s findings in  relation to Engesser’s 
formula. The trusses considered by  Handa are 
composed of open section members, so that effects 
associated with  the resistance of the chord and wcb 
members to twisting  are of no  importancc provided 
local torsional buckling does not occur. When 
closed sections are used, and buckling rigidities become 
of the same  order as flexural rigidities, the Engcsser 
formula  can no longer be expected to give reasonable 
results.  The essential features of the Engesser solution 
may, however, be retained by considering all restraints 
to  the chord from the web members to be distributed 
continuously as in a special sort of elastic medium. 
It is thus possible to make a sufficiently accurate 
allowance for all the  restraints which have been  con- 
sidered in  a more elaborate  manner by  the many 
authors who have  written  on  the  subject.  This 
generalised solution to  the buckling of a comprcssion 
chord  in  a truss is the subject of the present paper. 

I t  is a common feature of the  treatments previously 
given that they consider the feet of the web members 
to be completely or  partially  restrained,  without  any 
allowance for the behaviour of the tension chord. 
Because of the high rotational  restraint at  the feet 
of the web members in bridge trusses,  the neglect of 
the tension chord is justified, but trusses forming 
part of a building  structure  may be  in a different 
category.  Subsidiary members such as  shecting  rails, 
connected to  the tension chord, will usually suffice 
to restrain it in position laterally,  but  may  not  have 
large enough flexural stiffness to offer significant 
restraint  against  twisting. If tht: tension chord is of 
tubular section, it will then  contribute  appreciably 
to  the  stability of the  truss. A solution which allows 
for the resistance to twisting of the tension chord 
must necessarily treat  the  truss as a whole, and  this 
is the basis of what follows. The analysis is based 
on the energy  method, allowance being made for 
the resistance to bending and twisting of all the mem- 
bers, and also for partial  twisting  restraint applicd 
to  the tension chord.  The  analytical  results  are 
summarised in Table 2 on pages 150 and 151. The 
solutions are  interpreted specifically in relation to 
six arrangements of vertical and diagonal members, 
but  are  not restricted to these arrangements. 
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Notation 
The  notation  is summarised in Figs. l(a)  and 2 and 

in  Table 1. The flexural rigidities B2, Bs, B4 and 
B5 are  the values of EI for bending out of the plane 
of the  truss ( E  modulus of elasticity, I moment of 
inertia).  The torsional rigidities C1 to CS are  the 
values of GJ (G elastic shear modulus and J the St. 
Venant torsion constant). The flexural stiffness of 
the members (not shown) which restrain  the tension 
chord CD against  twisting is defined by the  quantity 
A ,  which has the dimensions of the flexural and 
torsional rigidities ((force) X (distance)2). If the 
external members attached  to  the tension chord 
produce a torque of T at each  panel  point for unit 

angle of twist of the chord,  then A = - T where H is 

the  depth between centres of chords and S is the distance 
between panel  points  (Fig.  1 (a)).  The symbol 0 
denotes the angle between the diagonal members 
and  the tension and compression chords. The  length 
of the  truss, between points a t  which the compression 
chord is restrained  against  lateral  displacement, is 
denoted  by L,  while l is the half-wavelength for the 
compression chord  in the buckled state.  The  thrust 
in the compression chord is denoted by P. 

Various symbols, ( p ,  q, B, C, D, F )  are used to 
denote  functions of the above  quantities,  and  are 
defined as occasion arises in  Table 2. In  the analysis 
we take  axis 02 along the centre of the tension chord 
(Fig. 2(a)), OY in the plane of the  truss perpendicular 
to 02, and OX perpendicular to OY and OZ. The 
angle of twist of the tension chord is denoted by 8, 
and of the compression chord by 02, while the de- 
flection of a point  on the compression chord  out of 
the plane OYZ is denoted by U.  Taking any particular 
web member FG  in  the deformed state (Fig. 2(b)), 
the angles between the  tangents at F and G and  the 
straight line FG are  denoted by P1 and p2 respectively. 

H2 

S 

General Analysis 
It will be assumed that, in  the buckled state,  the 

lateral deflection of the compression chord (in direction 
XO) is given by 

xz 
U = H 0  sin- . , . .  

l? * (3) 
where z is measured from one end. I t  is assumed 
that  the tension chord  remains  straight. These 
deflected forms neglect the local distortions produced 
in the chords  by the bending and twisting resistance 
of the web members, and  are justified provided the 
flexural rigidities of the chords  are large compared with 
the flexural and torsional rigidities of the web members. 
The angles of twist of the tension and cornpression 
chords (clockwise about 02) are  represented by 

81 = alesin- 

O2 = a&in - 

. . . . . .  
l ’  (4) 

I ’  (5) 
. . . . . .  

The  external  work,  per  length l of the  truss,  due  to 
the  thrust P in the compression chord  is Up where 

1 

0 

Since the tension chord is assumed to remain straight 
no work is done by  the force Q. The  external work 
Up has  to be equated to  the  total  strain energy due 
to buckling in the members of the  truss. 

The tension chord has  strain energy due to twisting 
Ucl where 

l 

The compression chord  has  strain energies uB2 due to 
bending and Uc2 due to twisting where 

l 

l 

We consider now the  twisting  and flexure of any 
diagonal member FG (Fig.  2).  The line FlF2 is taken 
through F perpendicular to  FG  and in the plane OYZ. 
The line GlG2 passes through G and is parallel to F1F2. 
Since there is continuity between the tension chord 
and diagonal FG at F, the  tangent  to FG rotates 
during buckling about FlF2 through  the angle 

(a10 sin 7.  sin o where z is the distance of F from 

the origin. Similarly, the  tangent  to  FG at  G rotates 
about GIG2 through the angle 

) 

( l ) az~s in  e), sin@ + 0 cos x ( z  + . c o s 0  
l! 

The  chord FG rotates  about FlF2 through  the angle 

Fig. 2(b)  are  thus 

We  now make the assumption that H and S are small 
compared with l ,  and ignore S in comparison with z. 
Hence 

p1 = (1 - al) 8 sin-.  sin 0 ,  . . . . nz 
l (10) 

If we denote the bending moments a t  F and G in 
the member F G  by M1 and M2 respectively as shown 
in Fig. 2(b),  then  the slope-deflection equations give 

(12) 
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TABLE 2 .  

B = B,  SIN^ $ 

c = c4  SIN^ + 
0 DENOTE5 COMPLETE RE5TRAlNT AGAINST LATERAL DEFLECTION. 

6 (B+B3) (2D + 3) cl, = (A+F+s)(F+s)+ 9 C ( B + B , ) - D F  

' 

TAKE SMALLEST P (m = i, 2, _ _ _ _ _ _ _  1. 
p2 = 12 tan +. 

SAFE RESULT, A L L  LENGTHS, 4 i  /B2 ( B + h )  

P = [.Cl + 4 8  cot 9 + ( C + C 3 )  tan . 
> 1 ,  2 

'k 1 
* For x - read - x2 

P P 
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t 

I = I’ I 

+ 
B = 6+Sln3 9 ,  B 3 =  0 
C = C,SlN3 $, c3= o 

H 

l - - - - - s 4  
--.t 

= FLEXURAL STIFFNESS OF TRANSVERSE  ATTACHMENTS A h2,-. AT EACH LOWER PANEL POINT. 5 

AS { c,  } WITH C, REPLACED BY Cl . A -  

I 
P - -  - H2 

r -  l 

SAFE RESULT, ALL LENGTHS, 
l 

A =  0 
c,= 0 

A = O  
c2- 0 

c ,  = 0 
c2 = 0 

t For - read - x x2 

q2 7iz 
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If there  is one  diagonal  number for each length S of the 
truss  (as  in Fig. 2), the  mean bending  energy in the 
diagonals  per unit  length of the  truss  is 

Substituting  for 8 1  and p 2  from  equations (10) and ( 1  1 )  
in  equation (14) ,  and thence  for A UB4 in  equation ( 1  5 ) ,  
the value of UB4 becomes, on  integration, 

{(I -a112 + ( I  - a l ) ( l  - 4 )  + . ( I  -a2)2 3 tan 0 

The  end F of the diagonal  FG  twists about  FG 

through  the angle 

twists  through  the angle 

Again, neglecting S in comparison  with z, the twisting 
energy A U@ in  the diagonal is 
AUC4 = m{ c4 (a1 - a2) 8 sin-. X Z  cos 0 

l 

The  total  twisting energy  in the diagonals is Uc4 where 
C 

whence 

The bending and twisting energies in  the vertical 
members of the  truss  may be  derived  from  the values 
for the diagonal  members as follows. It is assumed 
that  the vertical  members  are  spaced at intervals of 
S = H cot 0 > as in Fig. 2(a).  The angles p 1  and p 2  for 

any vertical FK are  obtained  by  putting 0 = - 2 
in equations (10) and ( 1  l ) ,  and  the bending  energy 
A U,3 is  then  obtained  from  equation (14)  by  putting 

0 = 'z and replacing B4 by B3. The  total bending 

energy u B 3  in  all  the verticals is obtained  from  equation 
(15), but tan @ must here be retained since it corres- 

ponds to-and defines the spacing of the members. 

Hence 
UB3 = (( 1 a1)2 + (1  ..- -- al) ( l  -- ad + (1 - a ~ ) ~ }  X 

(20) 

X 

x 

H 

Similarly we obtain  the twisting energy U@ in the 
verticals, 

Finally we require the energy stored in the  sub- 
sidiary members which restrain  the tension chord 
against  twisting.  The  restraining  torque  pcr  unit 

T x2 T A  
S l! s H2 

length is - a1 8 sin f and since - = - ,the  total re- 

straining  energy UA over the buckling length I is 
l 2 

0 
I 

The enerw equation for the  length I of the  truss is 

Upon substituting for the expressions for the  separate 
terms, we have 
PHz=u12 Cl+a22 C2+4B cot 0 + (C+C3) tun 0 

+ + n2a12A + n2( a1 -. a2)2 C cot 0 B2 

+4n2[(1-- a1)2+(1---al) ( 1 -  a z + ( l -  a423 (B+ B3) tan 0 
where . . . . D .  . ( % )  

I 
7tH ' 

n = - -  

B = B4 sin3 0, 
C = C4 sin3 0 .  

L The buckling length I may assume any value - m 
where m is a digit.  For each I ,  the corresponding 

buckling load P is obtained by  putting - = 0 and 

= 0, so that P is a minimum with respect to  the 

ap 
aa1 

aa2 
arbitrarily chosen coefficients a1 and a2. 

Hence 
2(3- 2al-- Q) ( B  + B3)fan 0 - - (a1 - a2) C cot 0 

Equations (25) and (26) may be solved for a1 and a2 
and  the resulting values of a1 and a2 substituted in 
equation (24). If P = P1 corresponds to m = 1 ,  
P = P2 to m = 2 etc.,  it will usually be most con- 
venient first to calculate P1 and P2 ; if P1 < P2, then 
P1 is the required  solution. If P1 > P2, then P3 is 
cslculatcd ; if then P2 < PS,  P2 is the solution,  and 
so on. Thc complete equations for this general 
solution are given at  the beginning of Table 2 on 
page 150. The  diagrams at  the head of the  table 
show how the results  may be applied to trusses  with 
some common arrangements of web members by 
'suitably  adjusting  the significance of the  terms B and C. 
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The  above procedure is lengthy,  and in some cases 
a more convenient solution,  on the safe side, may be 
obtained if it is assumed that I may possess any value 

less thanL. We then have - = 0 or, since ap 
aj  

Hence 
a12 A + (a1 - 4 2  C cot 0 + 4[(1 - 1- (1 -Q) (1 - a2) + (1  - a2121 ( B  + B3) tan 0 

- B2 . . - (27) -- 
n4 e 

The  value of P now appears  as  the solution of equations 

(24) to (27), provided I < L or n < 2 L . The  general 

solution  for P is not  explicit, but  an expression for P 
may  be  obtained  for the following special cases. 

( l )  A = 0, c1 = c2, 
(2) A = 0, c1 = 0 ,  
(3) A = 0, c2 = 0, 
(4) c1 = 0, c2 = 0. 

Results  for  these  four  sets of conditions are  sum- 
marised in  Table 2. Their  derivation will be illustrated 
by considering the second case, A = 0, C1 = 0. 

The  Case A = 0 C1 = 0 

If we put y = (7) tan20, 

equation (25) becomes 
1 -2y  (1 --l) =- 
1 + 4 y  

(1 - ~ 2 )  (28) 

and if ~2 = 12 tan@- ' $- equations (26) 
and (27) become respectively 

1 + 4y' 

B2 
n432 ( 1  - 4 2  = - 

B + B3 
. .  . .  (30) 

Hence 

By substituting  for al ,  a2 and n in equation (24), we 
obtain 

Equation (33) applies provided the length I = nxH 
obtained  from  equation (32) is less than  the length 
of the  truss L, that is provided 

l L32 1 I , .  1, 

When L is smaller than  the limit given by  the in- 
equality (34), the buckling length I must be taken 
equal to L,  and  the value of P is obtained by sub- 

stituting n 

Hence it is 

L 
7EH 

found 

=-  

1 
+F 

in  equations (24), (25) 

that 

and (26). 

1 + 4 B c o t 0  + (C + C3) t an0  l 
A safe solution  for P will result if  the member is 

assumed to  be infinitely long, whatever its  actual 
length  may be. For such  a  safe  solution,  equation 
(33) is  appropriate  provided  the  value of n given by 
equation (32) is real, that is, provided 

2/w.t3 + B3) < 1. 
'1 

c2 
When this 
condition  is  not satisfied, it denotes that  the buckling 
length is infinitely long, and a safe  value  for P is 
obtained  from  equation (35) by putting L = m, that is 

1 

The  interesting  feature of equations (33) and (36) is 
that  they provide a safe estimate of the buckling load 
of the  truss without  reference to  the length between 
laterally  restrained  points. These safe estimates 
are given for  all the special cases in  Table 2. 

Numerical  Example 
The  Warren truss  in Fig. 4(a), 60 feet long and 

5 feet  deep between chord  centres,  is composed of 
circular  steel  tubes of the sections indicated.  The 
modulus of elasticity, E ,  is 13,000 tons/in.2 and  the 
elastic  shear modulus, G, is 5,000 tons/in.2 Each 
panel  point on  the lower chord is partially  restrained 
against  twisting  about the longitudinal  axis to give 
A = 150 x l o 3  tons inz., corresponding to a stiffness 
at each panel  point of 3,500 tons ins. 

The  value of P which would cause instability,  all 
members being assumed to remain elastic, may be 
estimated  in  various ways, and  the solutions  are 
summarised  in  Table 3. The first result  quoted  is 
based on the general solution in Table 2, it being found 
that three half-waves gives the minimum value of P 
(313 tons).  With  two half-waves, P = 364 tons, and 
with  four half-waves, P = 347 tons. A cross-section 
of the  truss in the deflected state when three half-waves 
form is shown in Fig. 4(b). 

The  analytical solutions given in  Table 2 for the 
three cases ( A  = 0, C1 = Cz), ( A  = 0, C1 = 0) and 
(Cl = 0, C2 = 0) have been used in lines 2 to 4 of 
Table 3 to provide safe estimates of P. The values 
of the various flexural and torsional stiffnesses assumed 
in  each case are  quoted, as also are  the buckling 
lengths 1. It is interesting to note that  the  actual 
buckling length (20 feet, line 1 of Table 3) is smaller 
than  any of those  obtained  in  the  subsequent safe 
estimates of P, being slightly less than  the  shortest 
(26 feet, line 4). The  shortest buckling length  obtained 
from the safe estimates may, in  fact,  always  be used 
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P 

-7- 
5' 

i 

l CCOMPRESSION CHORD 

WEB MEMBERS.  
4%'' D. x 0.176" 

1 = 5 . 6 0   IN^ 

I 

I LTENSION CHORD 6%" D. x 0~212". I = 22.0  IN^ 

( 4  

WARREN TRUSS 

( b )  DEFORMATION AT 

(G) DIMENSIONS. 

BUCKLING LOAD . 

F I G .  4. 

P - 

l TABLE 3 .  l 

4 l76 2 6  5 6  0 0 73 645 150 C,=O, C2= 0 

5 I33 26 0 0 0 7 3  645 150 ENGESSER 

to  obtain  an approximation  to  the  actual buckling 
length.  Finally, if the Engesser formula is applied 
(line 5), allowance being made for  the incomplete 
torsional  restraint on the lower chord,  then P = 133 
tons. The Engesser  formula thus  underestimatcs 
the critical load in  this case by some 57 per cent. 

Application to Trusses  with  Non-Uniform  Thrust in 
Compression  Chord 

The analysis  contained  in this  article  has been 
derived by reference to  the case of uniform  thrust  in 
the compression chord.  The " safe " results con- 
tained  in  Table 2 may, however, be used to  obtain 
an approximate  criterion of safety  for  trusses with 
non-uniform thrusts,  and also non-uniform cross- 
sections, since these " safe " results do not involve 
the  length between points of support. A truss will 
be  stable  provided  the  thrust P does not exceed the 
value given by  the appropriate " safe " equations  in 

Table 2 at  any section along the  truss.  The member 
properties assumed in any such calculation are those 
corresponding to  the  particular section of the  truss 
considered, certain  properties being reduced until 
one of the cases contained in Table 2 becomes relevant. 

An exception to  the validity of the above  criterion 
may occur when the axial thrusts  in  the web members 
become appreciable  in relation to  their individual 
buckling loads as pin-ended members. Hrennikoff7 
in his treatment considered the effect of such thrusts, 
but  this is a  subject  requiring more detailed study. 
It  may be noted that in many  trusses, the effect of 
axial  thrusts  in some of the web members will be 
largely compensated by equal tensions  in  adjacent 
membcrs. Moreover, the most critical section of the 
truss for buckling of the compression chord will 
usually correspond to  that section where the  axial 
loads in  the web members are  small. I t  may  therefore 
be concluded that  the effect of axial  thrusts  in web 
members may usually be neglected. 
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Book Reviews 
Advanced  Structural  Design, by Cyril S. Benson. 

(London : Batsford, 1959). gin. X 6in., 329 plus 
xiii pp. 50s. 

This  interesting and practical book consists essentially 
of the material one would compile in designing seven- 
teen  structures. Of these ten deal with structural steel 
projects, five with reinforced concrete structures  and two 
with brickwork construction.  The problems analysed 
are diverse : included are  the complete designs for a 
grain silo, highway bridge, tank  structure, 120 feet 
span  shed,  two-bay  portal  plant  house,  theatre  balcony, 
multi-storey office building,  bunkers,  gantries and a 
chimney. 

The work  is clearly presented in a digestible form, 
and  the calculations  are skilfully augmented  with 
explanation where necessary. I t  should help to broaden 
the  structural horizons of the many designers who, 
unfortunately,  are only trained  in dealing adequately 
with one structural  material  and rarely  get the chance 
to see what the  other fellow does in  practice. 

Unfortunately,  the book must lose a great  deal of 
impact  in that BS.449 : 1948 is used for the steelwork 
designs. It may also be  said that  the designs tend  to 
be dated  and  many will regret that there is no reference 
to the Plastic  Theory in steelwork, or to prestressed 
concrete and  that little guidance is given to  the  student 
designing welded structures. 

Despite these shortcomings, the book may prove a 
useful stimulant for students planning to take  the 
Associate membership examination. R.H. 

Civil  Engineering  Contracts  Organization, by John 
C. Maxwell-Cook. (London : Cleaver-Hume Press, 
1959). S+ in. x 54 in., 220 plus viii pp. 22s. 6d. 

The  Author  sets out comprehensively the procedure 
from the inception  of a scheme by  the employer to 
its development in the  contract stage, giving the 
relationships between the various  parties concerned, 
advisory and executive, for the successful completion 
of a civil engineering project. A survey  is given of the 
contract  documents  in general use with definitions of 
contract  terms  and useful comments on the clauses, 
and some piquant  observations on financial arrange- 
ments. 

The personnel required for the execution of the com- 
plete scheme is described from top level to  the labourer 
and detailed as regards  their  duties and relationships. 
The  importance to  the client and  contractor of a 
preliminary  site  survey and  report  by  the consulting 
engineer on ground conditions has  not,  perhaps, been 
given sufficient  place. 

The  chapters  on specifications are  perhaps  not 
sufficiently up  to  date particularly  regarding concrete 

which is mostly specified by quality  control and  strength 
nowadays, nor is there  any mention of materials  testing. 
Most large contracts  are usually now equipped  with a 
site  laboratory for this  purpose. 

The  site organization section contains  many useful 
suggestions and aids to economy and smooth  running 
of work  on a  construction  site, and stresses the desire 
for design to be allied to easy and rapid execution a t  
site. The Glossary forms a welcome appendix. 

The book  will  be interesting and informative to all 
concerned in  the development and execution of civil 
and  structural engineering projects. F.T.B. 

Linear  Structural Analysis, by P. B. Morice,  D.Sc.’, 
Ph.D., A.M. T.C.E., A.M.1.Struct.E. (London : Thames 
& Hudson, 1959). 9& in. X 6g in, 170 plus xii pp., 
35s. 

Since the 193O’s, methods  such as strain-energy and 
least work have  steadily been giving way to methods 
of successive approximation for  the analysis of many 
forms of elastic  structures. Quite recently, however, 
the introduction of matrix algebra to  structural analysis 
has  greatly increased the usefulness of the classical 
approach. Moreover, electronic computers  are  available 
to perform the tedious numerical work involved in 
processes such as  matrix inversion, thus  making 
possible the solution of problems having  a high degree 
of indeterminacy. 

This book forms an excellent introduction to  the 
subject.  The first two  chapters  are largely devoted to 
the basic concepts of strain energy, Castigliano’s 
theorems, and influence  coefficients, and include a 
variety of examples. There follows a treatment of the 
question of the degree of indeterminacy of structures 
by a  method which is stated  to be without exception in 
its application to skeletal  structures  and,  as  such, 
represents  a  notable  advance on previous methods. 

Matrix algebra is  then introduced,  particular atten- 
tion being paid to computational procedures, the 
description of each type of matrix operation being 
accompanied by a simple worked example. The follow- 
ing  chapters deal with scale factors,  transformation of 
co-ordinate  systems and a number of points concerning 
release systems (of which the  suitable choice may 
simplify the analysis).  The final chapter deals very 
briefly with the programming of an electronic digital 
computer for structural analysis, and an  appendix 
gives four worked examples which nicely illustrate  the 
methods developed in the main text. There are 
numerous references which will help the  student who 
wishes to pursue further  any aspect of the subject. 

E. M. 


