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Synopsis 
In the  design of reinforced  concrete  slabs  the  Wood-Armer  equations 
are  used  extensively.  However;  their  direct  application  to  assessnzent 
can  result  in  a  conservative  estimate  of  structural  capacity.  Equations 
based on the  same  fundamental  principles  are  derived  which  provide 
a  more  precise  measure  ofthe  ability of a  given  slab  to  withstand  an 
imposedfield of moments.  Application qf these  equations  will  lead, in 
many  cases,  to  an  improved  assessment f o r  bridges  previously 
analysed  using  the  Wood-Armer  equations  and  found  to  require  a 
load  restriction. 

Introduction 
The Wood-Armer equations were derived for the design of reinforced con- 
crete slabs subject to complex loadings. The equations ensure that the capac- 
ity of a  slab is not exceeded in flexure by an imposed loading, whilst 
minimising the total amount of reinforcement required. However, the use 
of these equations for assessment leads to a conservative estimate of struc- 
tural capacity in  all cases where steel is not distributed optimally. The opti- 
mality condition is  a constraint in design problems that is not relevant to 
assessment problems, and its use can lead to adequate structures being con- 
demned as unsafe. 

The present analysis is based on the same fundamental principles as 
those set out by Hillerbourg', which were extended by Wood2 and Armer3 
in the derivation of the Wood-Armer equations, but it assumes that the rein- 
forcement arrangement is already known. The methodology provides a sys- 
tematic approach to assess whether a reinforced concrete slab has sufficient 
capacity to withstand an imposed loading, quantified by determination of 
the factor of safety on that loading. 

Loading  and capacity field equations 
To maintain consistency with the Wood-Armer derivations the axis system 
used by  Wood has been adopted and is shown in Fig 1. As a number of dif- 
ferent  conventions  can be used to define bending moments it is worth 
emphasising that, in the following analysis, the applied bending moment M-, 
is about an axis perpendicular to the x-axis, so that it gives rise to stresses 
in the x-direction. The same convention is adopted for moments of resis- 
tance which are denoted by M*. Thus, steel parallel to the x-axis contributes 
primarily to the capacity term M-,*. 

It  will  be observed that the convention used for moments of resistance dif- 
fers slightly from that used by Wood, since the present method is concerned 
with analysis rather than design. Here, M,* is the total moment of resistance 
of the slab about an axis perpendicular to the x-axis, including any contri- 
bution made by reinforcement at a skew angle to the x-axis. Wood, on the 
other hand, used M,* to denote the moment of resistance needed from rein- 
forcement parallel to the x-axis alone. For orthogonal reinforcement both 
conventions yield the same numerical values for M,* and My*.  

MW 

M\:' \ \ 

Fig 1. Notation for bending  moments (positive as shown) 
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Fig 2. Relutionship  between  the x-, n- and a-uxes 

For simplicity, moments are represented by  the triad (M,, M,., Mx,.). An 
asterisked triad (....., ....., ..... )* will indicate moment capacity. 

As defined in Fig 1,  hogging moments are positive, and thus require 
steel primarily in the top face. Steel will be needed in the bottom face to 
resist negative moments. Analogous equations can be derived for other sign 
conventions, for both the flexural moments M-, and M ,  and the twisting 
moment M\... 

All moments in  the analysis which follows will  be expressed as moments/ 
unit length, so will have units of force. It  will  be assumed that all sections 
are significantly underreinforced, so steel in the bottom face of the slab will 
affect only the sagging moment of resistance and will have no influence on 
the hogging moment of resistance, since it is adding to a compressive 
strength that is already more than adequate. 

The flexural load effects at a point in a plane slab due to an imposed load- 
ing are fully defined by the moment triad (M,, M,,, M,J. The bending 
moment M,,, about any other axis (see Fig 2), can be derived solely by equi- 
librium, giving: 

M ,  = ~ , c o s ~ ~ + ~ , . s i n ~ ~ - 2 ~ , . s i n ~ c o s ~  ....( l)  

For a single layer of reinforcement at an angle of a, as shown in Fig 2, 
the moment of resistance about the normal to the n-axis, MN*, calculated by 
applying Johansen's stepped criterion of yield4, is given by 

M,** = M,* cos2(e - a)  ....( 2) 

The cos2 function accounts for the effective increase in steel spacing 
across a skew hinge and the reduced component of steel stress acting per- 
pendicular to the hinge. This equation has been verified experimentally 
(Morley5). 

Eqn. (2) may  be rewritten as 

M,,* = M,* COS* e + M ~ *  sin2 e - 2 ~ , , *  sinecos8 ....( 3 )  

where 

M ,  * = M,* cos2 ....( 3a) 
M,.  * = M,* sin2 a ....( 3b) 
M ,  * = -M,*cosasina ....( 3c) 

It is a reasonable approximation to assume that multiple layers of rein- 
forcement with different orientation act independently, although this is not 
strictly the case since the interaction of skewed layers of steel slightly alters 
the neutral axis depth. 
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When a slab contains several layers of reinforcement it  is convenient to 
adopt a generalised form of the capacity field equation based on eqn. (3). 
The moment of resistance about the n-axis due to m layers of reinforcement 
at angles ai, a2.... arrf to the x-axis is therefore given by: 

where 

M ,  " = X;(Ma;"COS? a;)  . . . . (4a) 

M,. * = x,(Maj:ksin2 cl,) ....( 4b) 

M.~, .  * = -X; (mai* sin ai cosai 1 ....( 4c) 

and 

a; is the angle between the 'i' layer of reinforcement and the x axis; and 
M,;" is the moment of resistance of the 'i' layer of reinforcement about an 

axis perpendicular to its direction, neglecting all other layers of rein- 
forcement 

Comparison  of  loading  and  capacity  field  equations 
A slab will have adequate capacity in flexure provided the moment capac- 
ity defined by eqn. (4) exceeds the loading moment defined by eqn. (1) for 
all values of 0. This condition applies to both the design and assessment of 
slabs. However, in design there is generally a secondary condition that the 
total amount of reinforcement should be minimised for economy. Wood 
showed that reinforcement could be optimised by constraining the loading 
and capacity curves to just touch at a particular value of 0. 

The capacity condition is  most readily illustrated graphically. In Fig 3 the 
loading fields at a point due to two load cases are plotted and may  be com- 
pared with the corresponding capacity field curve. Both load cases have M, 
= 25 kNm/m and M,. = 35 kNm/m, which are less than the  resistance 
moments, which have'been taken as Mr* = 30 k N d m  and M,." = 60 kNm/m. 
Comparison of the loading and resistance moments might suggest that the 
slab capacity is acceptable. However, this does not take account of the M~,:,. 
term, which is 10 kNm/m in the first case and -40 kNm/m in the second. 
The resistance moment M.,!* has been taken as zero, which would be typi- 
cal if steel were placed only in the x- and y-directions. 

Load case I gives a moment which is everywhere adequate, but the sec- 
ond case  exceeds the capacity over  quite a large range of values of @. 
Furthermore, it causes negative moments for some values of 0, so that steel 
in the opposite face must be checked. Fig 3 highlights the dangers of trying 
to infer whether a slab has sufficient capacity to withstand an imposed load- 
ing by comparing the moment of resistance and the bending moment about 
the reinforcement directions alone; instead, the resistance moment must be 
checked for all values of 0. 

Development  of  equations  for  determining  the  factor  of  safety 
The approach that follows is based on the method set out by Hillerbourg' 
to determine  equations governing reinforcement requirements in elastic 

- Actual  capacity - Load  case 2 
Load  case l 
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Fig 3. The  variation  in  moment  of  resistance  and  applied  bending  moment for a 
reinforced  concrete  slab  under mo load  cases 

design, extended to multiple layers of skew reinforcement and modified to 
calculate the factor of safety on  an applied field of moments. A similar 
approach was also used by Kemp6 to determine the  yield criterion for an 
orthogonally reinforced slab. 

The derivation is applicable to slabs under the action of bending and 
twisting moments and does not consider the effects of membrane forces. As 
usual, the effects of shear forces and transverse stresses are neglected. 

The aim  is to formulate a systematic approach to determine whether a slab 
has sufficient capacity to withstand an imposed loading, as quantified by the 
factor of safety on  the loading, which will be denoted by y. In graphical 
terms, the factor of safety is the maximum factor which  may  be applied to 
the loading curve so that it just touches the capacity curve. 

The reserve of strength is everywhere given by M,," - yM,,. In the limit, 
the capacity and loading curves must touch, but  not cross. From eqns. (1 )  
and (4), therefore, there will be a particular value of 0 ( = 0,) which  must 
satisfy the two conditions: 

and 

If eqn.(5) is  divided  by cos %,, and k defined  as  tan O , ,  it follows that 

M,* -2kM.,. * +k'M,.* 

M., - 2kA4,,. + k'M,. 
Y =  ....( 7) 

and from eqn. (6) ,  

yM.,,. - M,,." 
k =  

yM,.  -M,." 
, . .(S) 

If eqn. (8) is substituted into eqn. (7) and  the  result rearranged, a quadratic 
in y results: 

( M , M ,  - M.,.,.2) y 2  +(2M.,,M,,:':-M.,* M,. - M,yM,*)  y + 
(M" M,." -M,r,.*?) = 0 ....( 9) 

It should be noted that, for the case where y= 1, eqn. (9) is an alternative 
formulation of the yield criterion given by Morley7. 

Since eqn. (9) is a quadratic, there are two solutions for y, both  of which 
can be shown to be real. 

There are two sets of resistance moments Mx*, M,.* and one for pos- 
itive moments and the other for negative moments, corresponding to steel 
in the different faces of the slab. These need to be considered separately, 
although, as is demonstrated below,  the same equations can be  used for both 
cases. 

Assessment  for  positive  reinforcement 
It is now possible to consider the range of possible solutions of eqn. (9) for 
positive reinforcement. Since it is a quadratic, there will  be two solutions, 
yI and y2; only one of these can correspond to the critical load factor. A way 
must  be found to distinguish which is relevant. 

The reserve capacity of the section is everywhere given by MIf* - yM,,. 
At the critical value of 0 (= e,,), this will  be zero. For the critical solution, 
i t  will  be also be a minimum, indicating that the factored applied load is 
everywhere less than the capacity. 

Thus the factor of safety y must satisfy 

,..(IO) 

whence 
1 - y (M, .  . .  /M,.*) 2 0 ....( 1 1) 

Table l gives all five possible combinations of y and 1 - y(MJ.lM,.*) that 
can arise, denoted as cases 1-5. It shows which of the two values ofy is the 
critical load factor. There are three basic forms of solution that can occur, 
depending on the form of the applied moment field. The significance of 
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TABLE I - Interpretation  cfsolutions~for y 

Case 
no. 

Nature  of  applied  or 
live  loading  moment2 

Safety factor  on 
live  loading or ' 

Case 1 > o  1 > o  > O  < O  1 Same as capacity  field Yl 

Case 2 > o  I > o  < O  > O  I Same as capacity field Y2 

Case 3 > o  I < o  > O  Y1 > O  

Mixed  moment field > O  

Mixed  moment  field 

Case 4 < o  1 > o  > O  Y2 

Case 5 < o  I < o  Any  value Any value I Opposite to capacity  field N I A ~  

NOTES: 
( 1  ) The upper  expression  should  be  used  for  the  interpretation of y from  eqn. (9) and  the  lower  expression  for  the  interpretation of y from  eqn. (17). 
( 2 )  The applied  moment  field  from  eqn. (9), or live  loading  moment  field  from  eqn. ( I  7), is either  positive (i.e. both  principal  moments  are  positive),  negative or mixed. 
(3) As the  applied or live  loading  field  is  the  opposite  sense  to  the  capacity  field it is  not  possible  to  calculate  a  safety  factor  on  the  applied  loading. 

these is best illustrated graphically, and the following three cases are exam- 
ined in Figs 4(a),  4(b) and 4(c), respectively: 

- purely positive moment field (i.e. both principal moments are positive) 
- mixed moment field (i.e. the principal moments have opposite signs) 
- purely negative moment field (i.e. both principal moments are negative) 

From Fig 4(a) it can be seen that, for a purely positive applied moment 
field, the solutions for y correspond to two cases which satisfy the condi- 
tions that the curves touch at a single value of Q. However, only one value 
of yresults in the capacity exceeding the loading for all Q. For the curve sat- 
isfying this requirement, the critical value of Q corresponds to a minimum 
in the function M,,* - YM,~ ,  and will therefore satisfy eqn. (1 1). 

For a mixed moment field (see Fig 4(b)), both load curves lie below the 
capacity curve. However, one solution for y will always be negative and 
therefore unacceptable. 

If the applied moment field is purely negative, as  in Fig 4(c), both solu- 
tions for y will  be negative. In this case, no positive reinforcement is required. 

Assessment for negative  reinforcement 
The same loading case will also have to be checked against the negative 
moment capacity; the same argument can  be  used as that for positive rein- 
forcement. However, the critical value of Q. now corresponds to a maximum 
of the function M,I* - yM,, and, therefore, the acceptable solution for y sat- 
isfies the equation: 

d 2 ( M , * - W J  
d e 2  

....( 12) 
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Fig 4(b). Solutions for y from eqn. (9) with a mixed appliedfield of  moments 
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Fig 4(c). Solutions for y from eqn. (9) with a negative appliedfield of  moment 

0 
0 30. 60. 90. 120. 150. 180. 

Angle ( 0 )  

Fig 4(a). Solutions for y from eqn. (9)  with a positive appliedfield of  moments 

The  Structural  EngineedVolurne 74/No 9/7 May 149 



Paper:  DentodBurgoyne 

-- Actual  capacity 

- Capacity  required by Wood-Armer  equations 
__ - -  Applied load 

60. 

40. 

20. 

0 
0 30. 60. 90. 120.  150. 180. 

Angle ( 0 )  

Fig 5. Resistance momentfield calculated  using  the  Wood-Armer equations 

After rearrangement, and taking account of the fact that M,.* is negative, 
it follows that: 

1 - y(M,. . .  /M,.*)  2 0 ....( 1 1 bis) 

It is convenient that this criterion is identical with that for positive rein- 
forcement (see eqn. ( 1  l ) ,  so Table 1 can be used unchanged, and the prin- 
ciples illustrated in Figs 4(a)-4(c) still apply. 

Special  cases 
It can be shown that, for values of M,*,M,.* and M,,.* where, 

M,* M,." -M,.** 2 0 ....( 13) 

all solutions for y will be real. Eqn. ( 1  3) expresses the requirement that the 
capacity curve must not cross between the hogging and sagging regions, and 
will always be satisfied if M,*, M,.* and M,,.* are calculated using eqns. 4 

When a  slab contains only a single direction of reinforcement, eqn. (1 3) 
is satisfied identically, and it is interesting to note that if, in  addition, the 
loading field is purely of the same sign as the capacity field, the only admis- 
sible solution for y is zero. 

Eqn. (9) holds for all values of k, including e,, = 0" and 8, = 90"; these 
cases occur when M,M,,.* = M,*M,, and M,",* = My*Mx,, respectively. 
If both these conditions hold, 8, is undefined, and eqn. (9) becomes a per- 
fect square yielding a single solution for y. In this case, 

( ah4  (b), and 4  (c). 

....( 14) 

which corresponds to the load curve being an exact multiple of the capaci- 
ty curve. 

Comparison  with  the  Wood-Armer  equations 
In the analysis given above, the load and capacity equations touch (for the 
critical value of y ) at 8, which can take any value. In design, where the 
capacity is not yet known, Wood showed that the minimum amount of 
orthogonal reinforcement is required if @, is either 45" or 135". The effect 
of this can be shown by considering the first load case from Fig 3, the 
moment triad (25,35, IO), which has already been shown to be adequately 
resisted by the capacity (30,  60, O)*. 

The Wood-Armer equations lead to design capacities or 'reinforcement 
moments' of 35 kNm/m and 45 kNm/m for reinforcement parallel to the x- 
axis and y-axis, respectively. The total amount of reinforcement (which 
Wood assumes to be proportional to the sum of the design capacities) is 
higher for the actual reinforcement (= 90) than for the Wood-Armer equa- 
tions (= SO), but this is an irrelevant consideration when checking the ade- 
quacy of the section. 

The variations in actual capacity, applied moment and the capacity field 
generated by the Wood-Armer equations are shown in Fig 5.  
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Example 1 
The procedure for assessing a slab is shown as a flowchart in Fig 7. 

Suppose that a slab is  being checked which  has  the reinforcement arange- 
ment shown in Fig 6, with the moment of resistance of the reinforcement 
parallel to the x-axis alone equal to IO0  kNm/m  and  that of the  skew rein- 
forcement alone equal to 35 kNm/m. It follows from eqns. (4a),(4b) and 
(4c), that 

= 1 0 0 . ~ 0 ~ ~ 0  + 3 5 . ~ 0 ~ ~ 7 0  = 104.09 kNm/m 
M,.* = 100.sin'O + 35.sin270 = 30.91 kNm/m 
M,:,." = - (100.sinO.cos0 + 35.sin70.cos70) = - 1  1.25 kNm/m 

and hence, using the resistance triad notation, 

M* = (104.09, 30.9 I ,  - 1 1.25)* kNm/m. 

Suppose, further, that the applied moment field, as determined by a suit- 
able analysis method such as finite elements, comprises 

M = (35, 15, IO) kNm/m. 

Then, from the solution of eqn. (9), 

yl = 5.402 
y2 = I .346 

so that 

I - y1 (MJM,.") = - 1.622 
I - y2(My/M,*) = 0.347 

Skew  reinforcement 

A 
Y 

i 

I * 
X 

Fig 6. Skew  reinforcement 

Determine M,, Myand Mxy 
at  the  location of interest 

Calculate M,*, M,' and 

M,,* using  eqn.4 

I 

2 possible solutions for y, 
deonoted by y, and y2 

1 v 
Evaluate  l-yiMy/M,* 

and  l-y, MY/MY* 

Use  Table l to  select  the 
critical solution for Y 

~~~ 

Fig 7. Procedure for assessment  under a single  applied  moment jield 
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I 

Determine Mx dead, My dead and 
M d a d  at  the  location of interest 

Determine M x  live , My live 

and M xy live 

Calculate Mx* , M * and 
Mq* using eqn.4 

1 
Solve eqn 9 and using Table 1 

determine the value y of under dead 
loading alone, denoted by y dead 

Yes 

The slab  has 
insufficient  capacny 

for dead loading 
Solve eqn 17 to determine 
2 possible  solutions for y, 

I denoted by yl and y2 I 

Use Table 1 to  select  the  critical 
solution  for l 

similar to that used above can be developed. It  then follows that, at the crit- 
ical angle e,, 

and 

where M,clecrd, M,.c/euc/ and M,,.,~ecic~ define the dead or permanent loading field 
and M, M! li,.e and MxX live define the live or additional loading field. 

As before, these conditions can be rearranged to give a quadratic in y 

which has two solutions yl and y2. The criterion for selecting the correct 
value for ,y is similar to that for a single applied moment field and is gov- 
erned by the equation, 

' - Y ( M ? . / ; ~ , e / ( M ~ * - M ! d e u d ) ) ~ o  ....( 18) 

Table 1 may be used to identify the required value of y, and the proce- 
dure for assessing a slab for live loading is shown in Fig 8. 

Example 2 
Suppose that the loads applied to the slab in example l represented the dead 
loading, so that 

Meleu,/ = (35, 15, 10) kNm/m 

and that the live loads, also determined by a suitable (but here unspecified) 
analysis technique, are 

Fig 8. Procedure for assessment  under  combined dead and  live  loading 
Mlive = (6,4,5) kNm/m. 

From Table I ,  this can be identified as  case 2, so the safety factor on the 
applied loading is y2 (= 1.346). 

For the same applied moment field, the reinforcement moments calcu- 
lated using the Wood-Armer equations are 60.7 kNm/m for the reinforce- 
ment parallel to the x-axis and 33.4 kNm/m for the skew reinforcement. 

If the value of the skew reinforcement moment calculated using the 
Wood-Armer equations is compared with the actual moment of resistance 
of the skew reinforcement alone, the resulting factor of safety is 3933.4 (= 
1.04). Thus an improvement in the assessed capacity of approximately 30% 
is achieved through the use of the present approach in this case. 

Assessment  under  dead  and  live  loading 
When a slab is assessed to determine whether it has sufficient capacity to 
withstand some additional loading or when a slab  is subjected to a combi- 
nation of dead and live loading, it is often more informative to calculate the 
factor of safety on the live (or additional) loading after the full dead (or per- 
manent) loading has been applied. This assessment requires two stages - the 
first to ensure that the structure can withstand the dead load and, if it pass- 
es that test, a second analysis to  see how much live load can be carried. 

The first analysis can be undertaken by the method given above, but a 
modification is required for the second analysis. In this case, the dead load 
moments have to be taken into account. This can be done by subtracting the 
dead load moments from the load capacity, to give the load capacity avail- 
able for live load moments. 

Although this is the principle of the revised analysis, it is convenient not 
to have to calculate the live load capacities directly. Instead, an approach 

It was shown in the first example that the safety factor was greater than 

From the solution of eqn. (17), it follows that 
one; the slab therefore has some capacity available for live loads. 

~1 = -585.4 
'y2 = 1.106 

so that, 

From Table 1 ,  this can be identified as case 4, so the safety factor on the 
applied loading y2 (= 1.106). The  slab therefore has sufficient capacity to 
withstand the combined live and dead loading. 

For the same applied moment fields, the reinforcement moments calcu- 
lated for the skew reinforcement using the Wood-Armer equations are 33.4 
kNm/m for the dead load alone and an additional 1 1.4  kNm/m  when the live 
load is added. If these values are compared with the actual skew reinforce- 
ment capacity, the resulting factor of safety on live loading is (35-33.4)/11.4 
(= 0.14), which is clearly inadequate. Thus, whilst the use  of the Wood- 
Armer equations suggests that the slab only has sufficient capacity to with- 
stand 14% of the live loading in combination with the dead loading, the 
present analysis demonstrates that the slab can withstand the full combined 
loading. There would be no need to take remedial action for this slab. 

Conclusions 
The Wood-Armer equations, originally derived for design purposes, provide 
a conservative assessment of the capacity of a reinforced concrete slab 
because of their use of an optimality condition. However, by adopting the 
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present alternative methodology based on the same fundamental princi- 
ples, a more accurate assessment of the structural capacity under an imposed 
field of moments can be achieved. In most cases, this approach will lead to 
a higher assessed capacity for bridges previously analysed using the Wood- 
Armer equations and found to require a load restriction. 
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Taylor are not seeking reappointment; Mr J M Allen and Mr B W 

Cooper are willing to be appointed; the Trustees accordingly 
recommend the appointment of 

Mr John Michael Allen 
MS Carol Elaine Bailey 
Professor Leslie Arthur Clark 
Professor Anthony Ralph Cusens 
Mr Bryan Walton Cooper 
Mr Aderemi Oladipupo Ogundehin 
Dr John Maxwell Roberts 
Mr Brian Simpson 
Mr Jack Arthur WaIler.) 

Copies of the Trustees ’ review of activities  and  unauditedfinancial 
statements 1995 may be  obtained on application  to the Secretary, the 
Institution of Structural  Engineers  Benevolent Fund, 11 Upper Belgrave 
Street,  London SWlX 8BH. 
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