Andy Tyas has been a researcher at the University of Sheffield since 1993, initially as a Research Assistant on experimental blast & impact projects, then as a lecturer from 1997. Here he discusses the University’s research into “blast engineering” – the study of how structures react to explosions.

I always enjoyed maths and physics at school, and as a kid I enjoyed deconstructing radios, remote controlled cars and Tonka trucks to find out how they worked. At 6th Form I took an A-Level in Engineering Science, which was effectively the physics syllabus minus nuclear physics and with more of an emphasis on engineering. Ever since then my career has been devoted to engineering.

At Sheffield our blast research is entirely devoted to saving lives and infrastructure in the event of an explosion. We work closely with blast protection engineering consultancies and government organisations involved in security - to understand their problems and develop experimental approaches which help them develop more effective protection from blasts. Developing a deep understanding of the mechanics of blasts, and seeing this understanding produce real world benefits, is very rewarding work.

There are some parallels in what we do with wind and seismic engineering - the real-world scenarios that we want to protect against are by their nature unpredictable. We don't know exactly what blast threat a building may face, just as we don't know exactly how strong a wind or earthquake will be. However, we can develop an understanding of how particular structures will respond to a given loading in lab conditions.

So, just as engineers use wind tunnels or shaking tables, the challenge for us is to develop experiments that allow us to apply blasts to trial materials and structures, allowing us to develop guidelines and compare the performance of protection systems in scientifically controlled conditions.

Additionally, engineers are increasingly using sophisticated numerical modelling tools to analyse the way structures respond to blasts - tools that were rarely used outside the military until very recently. Our research provides benchmark data, which allows us to assess whether these tools are correctly capturing the underlying physics, and to provide guidance both to code users and code developers.

Watch Andy discuss the "Flybag" - a project to developed a high strength, fabric container which can fit inside an aircraft luggage hold, and contain the effects of an explosion.

The most effective way to protect a structure from blast loading is to make sure an explosion doesn't occur close to a structure. It's a philosophy known as "enforced stand-off" and explains why you sometimes find vehicle barriers or large bollards around major buildings.

But what if you cannot enforce stand-off for some reason? We need to understand the loading generated by an explosion very close to a structure, which is very demanding for experimentalists. Near-field blast loads can generate pressures with magnitudes tens of thousands of times higher than the most severe hurricanes, changing on a microsecond timescale. We're currently developing experimental approaches to measure these loads and give design engineers a better understanding of the threats and how to defeat them.

In principle, any building can be designed to resist, or at least, mitigate the effects of even the largest explosions. Measures which can help range from laying out the building to minimise loading, detailing of connections to enhance resilience and careful choice of facade systems like blast resistant glazing. The issue, as in all structural engineering, is balancing the cost of these measures with the anticipated level of risk. Two or three decades ago, civilian engineers rarely considered these issues in their designs. But the combination of an increased perceived threat, and the development of more effective materials and structural systems means that consideration of blast resilience is now becoming commonplace, at least for buildings in major urban areas.

The classic example of how things have changed is the Alfred P Murrah building in Oklahoma City, USA, which was severely damaged by a large vehicle bomb in 1995, resulting in 168 deaths. The building designers in the 1970s weren't to know this, but there were aspects of the design which made it critically vulnerable to this attack. Specifically, engineers in those days weren't thinking of enforced stand-off, so the attacker was able to park a large vehicle bomb very close to the structure and the resulting blast loading on the nearest structural elements was huge. And then there was no consideration of how a building would respond if one or more columns were destroyed, especially where those columns supported large transfer beams.  In the Oklahoma City event, the loss of two or three ground floor columns led to the collapse of the whole front face of the building and catastrophic loss of life.

On the other hand, the initial survival of the World Trade Center towers in the 9/11 attacks, despite the loss of many exterior columns due to the aircraft impacts (before fire weakened the damaged structures) shows that buildings can resist even very severe impact (or blast) damage. These towers weren't explicitly designed for that scenario but it was a matter of good fortune that the resilience of the structures enabled many thousands of occupants to get to safety before the eventual collapses. The WTC towers' exteriors were exceptional in having such closely spaced columns and spandrel beams, resulting in a great capacity for load redistribution. That specific structural system is not suitable for most buildings, but this case reinforced a principle that civilian protection engineers have taken on board.

We've learned important lessons from these, and other unfortunate events, which mean that we're better able to develop more resilient structures today.  But the threats, the possible design solutions and the economics of risk and protection are constantly changing, and our role as researchers is to provide the background understanding to make protection still more efficient and effective in the future.


Blog post currently doesn't have any comments.
All of the pages on this website are the copyright © of The Institution of Structural Engineers.

The Institution of Structural Engineers, International HQ, 47-58 Bastwick Street, London, EC1V 3PS, United Kingdom
Tel: +44 (0)20 7235 4535 Fax: +44 (0)20 7235 4294
Registered with the Charity Commission for England and Wales No. 233392 and in Scotland No. SC038263
Follow us on: Twitter Facebook LinkedIn Youtube The Structural Engineer Jobs