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INTRODUCTION

+ Stainless steel is a high value material characterised by a rounded stress-strain relationship with early deviation from linear elastic behaviour
and significant strain hardening.

» Current design standards for stainless steel structures were developed largely in line with those for carbon steel structures, which is based on
an idealised bilinear (elastic, perfectly plastic) material response - inefficient structural design.

* A new design framework utilising advanced analysis techniques and computationally efficient beam finite elements (FE) is presented.
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RESULTS

« Ultimate capacity predictions a,; obtained from the presented design method and the traditional stainless steel design procedures according
to EN 1993-1-4 compared against benchmark ultimate loads determined using shell FE models dge:
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* Presented method gives close and generally safe-sided capacity predictions to benchmark results and accurately captures failure mechanism.
+ The overly conservative EN 1993-1-4 predictions confirms the significance of appropriate allowances in the proposed method for the
beneficial effects of plastic redistribution, strain hardening and local moment gradient.

CONCLUSIONS

+ Challenges presented by nonlinear stress-strain response of stainless steel are overcome in the presented design method by employing
advanced analysis technique (GMNIA) with beam finite elements and strain limits.

+ Presented design method shown able to provide more accurate and consistent capacity predictions than EN 1993-1-4.

* Due to be included in AISC 370 and prEN 1993-1-14, offering a step change in efficiency for the future direction of structural stainless steel
design.
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THE PROBLEM

The lack of real-time feedback providing accurate engineering insight on design
decisions is a major hurdle for modern structural engineers [1]. By treating
structural design as an inverse problem [2], one can use a learned as opposed to
iterative solution approach to provide instantaneous design solutions. Such a
data-driven design model can be used to design continuous beam systems.

WHY PINNs FOR DATA-DRIVEN DESIGN?

Typical machine learning models rely only on data-points to construct the loss-
function Lyaea to minimise the error between ¥; and Y, the true and predicted
values respectively. Such black box models cannot be easily validated.

Physics informed neural networks (PINNs) [3]

Continuous beam with UDLs w, spans L and section-properties W,
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use proven physical relationships (e.g. F =
ma) expressed as physics equations P(x) to
create a physics-loss function Lypysics-
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The Lypysics l0ss function regularises outputs
to inputs, and forces the neural network to
make physically realistic results. Combining
data- and physics-driven losses results in the
PINN’s loss function Lpyyn-

HOW IT WORKS: pata-driven models need to be both generalisable and accurate/robust to achieve wide-spread usability.

1. Influence zone evaluation

To apply the PINN to any continuous beam system,

the recently developed influence zone conceptis
implemented [4]. The influence zone k.«

indicates the extent to which surrounding design
information are relevant for the design of a beam.

Influence zone k.«

By evaluating the influence zone for design
conditions that arise in steel-framed buildings, it
is possible to statistically infer the maximum
influence zone size to be k., = 5 (see figure
below). A PINN whose inputs contain the
information from this influence zone can be
applied to any continuous beam system.

Influence zone distribution

Frequency [%]

Min. utilisation u

0 1 2 3 4 5 6 7

max

I % Frequency  —®@— Min. utilisation u

2. Physics-informed loss equations

The physics equations P(x) chosen for the PINN’s Ly, ysics l0ss function were
the Timoshenko stiffness matrices. By relating the internal forces to cross-
sectional properties and by providing fixed end-moment adjustments, it is
possible to relate the input variables, UDL(s) w and spans L, to the output
variable(s), such as the plastic section modulus W,,; (see diagram on the right).
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A simplified view of
the PINN

Inputs

Further P(x) equations could be constructed for other output variables (I,,,, 4,, —
. . . . . Hidden
etc.). By extracting the remaining variables (E, u, 0, f,,, ) from the critical design vaild)

check during data generation, the PINN is ready for training.

3. Data generation and preliminary results

100k different continuous beam systems was designed with varying UDLs and spans using a coupled analysis
and design approach [5]. The performance of the PINN in comparison to a standard data-driven NN and a
simple linear model is shown below, expressed in terms of validation accuracy (target accuracy is 10° = 100%).
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As shown by the results, the PINN model
provides better validation accuracy
convergence than the other models, an
indication of improved robustness.
Future steps include testing out various
physics equations P(x), expanding the
application to 2D structures, and
providing improved interpretability
during inference.
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