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systems by GMNIA with strain limits
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RESULTS

NEW DESIGN FRAMEWORK

• Stainless steel is a high value material characterised by a rounded stress-strain relationship with early deviation from linear elastic behaviour
and significant strain hardening.

• Current design standards for stainless steel structures were developed largely in line with those for carbon steel structures, which is based on
an idealised bilinear (elastic, perfectly plastic) material response à inefficient structural design.

• A new design framework utilising advanced analysis techniques and computationally efficient beam finite elements (FE) is presented.

INTRODUCTION

• Ultimate capacity predictions αult obtained from the presented design method and the traditional stainless steel design procedures according
to EN 1993-1-4 compared against benchmark ultimate loads determined using shell FE models αshell:

• Challenges presented by nonlinear stress-strain response of stainless steel are overcome in the presented design method by employing
advanced analysis technique (GMNIA) with beam finite elements and strain limits.

• Presented design method shown able to provide more accurate and consistent capacity predictions than EN 1993-1-4.
• Due to be included in AISC 370 and prEN 1993-1-14, offering a step change in efficiency for the future direction of structural stainless steel

design.

CONCLUSIONS
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• Presented method gives close and generally safe-sided capacity predictions to benchmark results and accurately captures failure mechanism.
• The overly conservative EN 1993-1-4 predictions confirms the significance of appropriate allowances in the proposed method for the

beneficial effects of plastic redistribution, strain hardening and local moment gradient.
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= Ultimate 
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Design 
resistance

safety
factors

• Traditional step-wise cross-section checks accounting for local buckling
replaced by the application of strain limits, which is dependent on cross-section
slenderness ̅λp.

• Failure is defined as first to occur of peak load or strain limit reached in analysis.

Local buckling in shell FE 
model

Presented 
method:
αult
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= 0.96

EN 1993-1-4:
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• Cement production is responsible for 5-8% of global 

carbon emissions.

• Alkali-activated concrete employs no cement in the mix 

design.

• Rubber particles from discarded end-of-life tyres are 

used to replace a proportion of the natural aggregates.

Aims:

• Develop an optimised mix design.

• Characterise the mechanical and structural behaviour.

Methods:

• Experimental testing of concrete specimens.

Mix 

ID

Slag Fly 

ash

Act. Admix. Sand Gravel Rubber Water

R00 480 120 72 30 675 825 0 180

R30 480 120 72 30 473 578 163 180

R60 480 120 72 30 270 330 326 180

Blast furnace 

slag
Fly ash

Gravel

(5-10 mm)

Sand

(0-5 mm)
Rubber

(0-20 mm) Water

Sodium 

metasilicate 

(activator)

Borax

(admixture)

Table 1: Optimised concrete mix designs (kg/m3)
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• Rubber addition significantly enhances the 

ductility of concrete and gives a more 

favourable post-peak degradation behaviour.

• Confinement of specimens can help overcome 

some of the challenges of rubber addition.  

Fig. 1: Constituent materials
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Fig. 4: Dynamic 

increase factors

Fig. 5: Confined axial behaviour
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Steel properties:

• Yield strength – 311 MPa

• Ultimate strength – 415 MPa

• Elastic modulus – 200 GPa

• Ultimate strain – 11.5%

• Steel thickness – 3.4 mm

AFRP properties:

• Tensile strength – 2035 MPa

• Elastic modulus – 107 GPa

• Ultimate strain – 1.9%

• Layer thickness – 0.2 mm
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fc

0.85fc

ε0.85ε0.65

0.65fc

= ε0.85 /ε0.65

Dynamic increase 

factor:

Dynamic strength

Quasi-static strength

Binder
A1: irrecoverable plastic energy

A2: recoverable elastic energy



HOW  IT WORKS: Data-driven models need to be both generalisable and accurate/robust to achieve wide-spread usability. 
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CONCLUSIONS & FUTURE STEPS

3. Data generation and preliminary results

WHY PINNs FOR DATA-DRIVEN DESIGN?

𝑳𝐝𝐚𝐭𝐚 =
1

𝑛


𝑖=1

𝑛

𝒀𝒊 − 𝒀𝒊
2

𝑳𝐩𝐡𝐲𝐬𝐢𝐜𝐬 =
1

𝑛


𝑖=1

𝑛
𝒀𝒊 − 𝑷(𝒙)𝒊

2

𝑳𝐏𝐈𝐍𝐍 = 𝑳𝐝𝐚𝐭𝐚 + 𝑳𝐩𝐡𝐲𝐬𝐢𝐜𝐬

Typical machine learning models rely only on data-points to construct the loss-
function 𝑳𝐝𝐚𝐭𝐚 to minimise the error between 𝒀𝒊 and 𝒀𝒊, the true and predicted 
values respectively. Such black box models cannot be easily validated. 

Data-
driven

Physics-
driven

Physics informed neural networks (PINNs) [3] 
use proven physical relationships (e.g. 𝐹 =
𝑚𝑎) expressed as physics equations 𝑷(𝒙) to 
create a physics-loss function 𝑳𝐩𝐡𝐲𝐬𝐢𝐜𝐬.

The 𝑳𝐩𝐡𝐲𝐬𝐢𝐜𝐬 loss function regularises outputs 

to inputs, and forces the neural network to 
make physically realistic results. Combining 
data- and physics-driven losses results in the 
PINN’s loss function 𝑳𝐏𝐈𝐍𝐍.

PINNs

𝑃(𝑥) = 𝑊𝑝𝑙 =
𝐸𝐼

𝐿3 1 + 𝜑
6𝐿𝑢1 + 4 + 𝜑 𝐿2𝜃1 − 6𝐿𝑢2 + 2 − 𝜑 𝐿2 −

ѡ𝐿2

12

1

𝑓𝑦

2. Physics-informed loss equations
The physics equations 𝑷(𝒙) chosen for the PINN’s 𝑳𝐩𝐡𝐲𝐬𝐢𝐜𝐬 loss function were 

the Timoshenko stiffness matrices. By relating the internal forces to cross-
sectional properties and by providing fixed end-moment adjustments, it is 
possible to relate the input variables, UDL(s) ѡ and spans 𝐿, to the output 
variable(s), such as the plastic section modulus 𝑊𝑝𝑙 (see diagram on the right).

Further 𝑃(𝑥) equations could be constructed for other output variables (𝐼𝑦𝑦, 𝐴𝑧, 

etc.). By extracting the remaining variables (𝐸, 𝑢, 𝜃, 𝑓𝑦, 𝜑) from the critical design 

check during data generation, the PINN is ready for training.

As shown by the results, the PINN model 
provides better validation accuracy 
convergence than the other models, an 
indication of improved robustness. 
Future steps include testing out various 
physics equations 𝑷(𝒙), expanding the 
application to 2D structures, and 
providing improved interpretability 
during inference.

THE PROBLEM
The lack of real-time feedback providing accurate engineering insight on design 
decisions is a major hurdle for modern structural engineers [1]. By treating 
structural design as an inverse problem [2], one can use a learned as opposed to 
iterative solution approach to provide instantaneous design solutions. Such a 
data-driven design model can be used to design continuous beam systems.

100k different continuous beam systems was designed with varying UDLs and spans using a coupled analysis 
and design approach [5]. The performance of the PINN in comparison to a standard data-driven NN and a 
simple linear model is shown below, expressed in terms of validation accuracy (target accuracy is 100 = 100%).

ѡ

𝐿

𝑊𝑝𝑙

Inputs
Output(s)

Hidden 
layer(s)

A simplified view of 
the PINN

REFERENCES
[1] D. Sinclair, A. Tait, L. Carmichael, RIBA Plan of Work Overview, RIBA, 

London, 2020

[2] A. Gallet et al., Structural engineering from an inverse problems 
perspective, Proceedings of the Royal Society A: Mathematical, 
Physical and Engineering Sciences 478 (2257) (2022)

[3] M. Raissi et al., Physics-informed neural networks: A deep learning 
framework for solving forward and inverse problems involving 
nonlinear partial differential equations, Journal of Computational 
Physics 378 (2019) 686–707

[4] A. Gallet et al., Influence zones for continuous beam systems (2023)

[5] M. P. Saka, Z. W. Geem, Mathematical and Metaheuristic 
Applications in Design Optimization of Steel Frame Structures: An 
Extensive Review, Mathematical Problems in Engineering (2013)

1. Influence zone evaluation
To apply the PINN to any continuous beam system, 
the recently developed influence zone concept is 
implemented [4]. The influence zone 𝑘max

indicates the extent to which surrounding design 
information are relevant for the design of a beam. 

By evaluating the influence zone for design 
conditions that arise in steel-framed buildings, it 
is possible to statistically infer the maximum 
influence zone size to be 𝑘max = 5 (see figure 
below). A PINN whose inputs contain the 
information from this influence zone can be 
applied to any continuous beam system.
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