Contents

Foreword 1 ix
Foreword 2 x
Foreword 3 xi
Author biography xii
Acknowledgements xiii
Preface xiv

1 Introduction 1
1.1 Computation and the structural engineer 1
1.2 The computer as Engineering Assistant 1
1.3 The purpose of design and analysis 1
1.4 Garbage in, Garbage out 3
1.5 The engineer of today and tomorrow 4
1.5.1 To code or not to code 5
1.5.2 The need for better design 6
1.6 The computational engineer 6

2 Design 8
2.1 Introduction 8
2.1.1 Learning to be creative 15
2.1.2 Structural art 15
2.2 The design process 16
2.3 Design personalities 17

3 Design parametrically 18
3.1 Introduction 18
3.2 How we work with computers 18
3.3 Parametrics 19
3.3.1 La Sagrada Familia 19
3.3.2 Selfridges Birmingham 20
3.3.3 Camp Adventure tower 22
3.3.4 The Gherkin 23
3.3.5 King’s Cross concourse 24
3.3.6 Everyday parametrics 26
3.3.7 Programming and scripting 27
3.4 Design communication 30
3.4.1 BIM, interoperability and digital workflows 31
3.4.2 Standards 35
3.4.3 Beyond 3D CAD: 4D, 5D and 6D 36
3.5 Conclusion 36
4 Analysis basics 37

4.1 Analysis — the key things you need to know 37

4.2 What is a model? 37

4.2.1 Simplification 39

4.2.2 The stool paradox 39

4.3 Software choices 40

4.3.1 Components, section design and detailing 40

4.3.2 Dedicated whole-structure design 40

4.3.3 General structural analysis and design 41

4.3.4 Modelling, documentation and communication 41

4.4 FEA 101 41

4.4.1 What is the purpose of FEA and how does it differ from CAD? 41

4.4.2 Essential aspects of an FEA model 42

4.5 Elements in more detail 43

4.5.1 1D elements 44

4.5.2 Meshed elements 46

4.6 Model types 50

4.6.1 One-dimensional models 50

4.6.2 Two-dimensional models 50

4.6.3 Three-dimensional models 51

4.7 Design the analysis — analyse the design 52

4.7.1 Plan 53

4.7.2 Do 53

4.7.3 Check 53

4.7.4 Act 53

5 Modelling structures 54

5.1 What is a good FEA model? 54

5.1.1 Accurate (as necessary) 54

5.1.2 Realistic (as appropriate) 55

5.1.3 Simple (as possible) 56

5.1.4 Useful (and relevant) 57

5.1.5 Checking 58

5.1.6 Saint-Venant’s principle 58

5.2 Applying good modelling 58

5.2.1 Structural types 58

5.2.2 Meshing 59

5.2.3 Trusses 62

5.2.4 Steel frames 63

5.2.5 Concrete 69

5.2.6 Substructure 77

5.2.7 Timber 78

5.2.8 Masonry 78

5.2.9 Modelling for vibration 79
6 Analysis methods

6.1 Introduction

6.2 Static linear analysis and the stiffness matrix
6.2.1 Stiffness matrices

6.3 P-delta analysis and the geometric stiffness matrix

6.4 Buckling analysis and the geometric stiffness matrix
6.4.1 Eigenvector analysis
6.4.2 Using buckling load analysis

6.5 Dynamic analysis and the mass matrix
6.5.1 Introduction
6.5.2 Modal dynamic analysis
6.5.3 Dynamic response analyses

6.6 Nonlinear analysis (with and without matrices)
6.6.1 Newton-Raphson method
6.6.2 Explicit solvers
6.6.3 Meshfree and particle methods

6.7 Conclusion

7 Resolving problems in FEA models

7.1 Finite element approximation
7.1.1 Ill-conditioning
7.1.2 Warnings and errors

7.2 Getting the units wrong

7.3 Exercising restraint
7.3.1 No restraint
7.3.2 Too much restraint
7.3.3 Confusing ‘restraints’ with ‘releases’

7.4 Forgetting torsion

7.5 Misusing offsets
7.5.1 Bad offsets
7.5.2 Good offsets

7.6 Meshing too coarsely or too finely
7.6.1 Other mesh errors

7.7 Second-order effects
7.7.1 Linear when it should be nonlinear
7.7.2 Buckling effects
7.7.3 Meshing
7.7.4 Linear vs. nonlinear buckling
7.7.5 Design

7.8 Validate the model
7.8.1 Valid models
7.8.2 Software validation
7.9 Verify the model
7.9.1 Envelope results
7.9.2 Software errors
7.9.3 Checklist for model-checking

7.10 Conclusion
7.11 Further reading

8 Optimisation
8.1 Why optimise?
8.2 What is optimisation?
8.3 What are we trying to optimise?
8.4 Optimisation types
8.4.1 The difference between civil and mechanical engineering optimisation
8.5 Topology optimisation
8.5.1 Maxwell’s Load Paths and the structural volume
8.5.2 Layout optimisation
8.5.3 Evolutionary topology optimisation
8.5.4 Ground structure
8.6 Shape optimisation
8.6.1 Nodal adjustment
8.6.2 Graphic statics and reciprocal force diagrams
8.6.3 Form-finding
8.7 Size optimisation
8.7.1 Optimality criteria

9 Optimisation methods
9.1 Introduction
9.2 The design space
9.2.1 Exploring the design space
9.2.2 Design space example
9.3 Optimisation methods
9.3.1 Deterministic methods
9.3.2 Stochastic methods
9.4 Optimising optimisation
9.4.1 Algorithms, heuristics and metaheuristics
9.4.2 Exploration vs. exploitation
9.4.3 Multi-objective optimisation and the Pareto Front
9.4.4 The Stopping Problem
9.4.5 Critical optimisation questions
9.5 Conclusion

10 Artificial Intelligence and Machine Learning
10.1 Introduction
10.2 What is Artificial Intelligence?
10.2.1 General AI
Appendix H: Arches and domes 256
 Corbelled arch 256
 Parabola 256
 Catenary 256
 Analysing arches 257
Appendix I: Brohn diagrams 258
Appendix J: Braess’ Paradox 259
Appendix K: Quantum computing 262
 Vector notation 262
 Logic gates 263
 Entanglement 266
References 267