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Executive Summary 

On 16 April 2016 an Mw7.8 earthquake with an epicentre 29km south-southeast of Muisne in 
the northern Ecuadorian province of Manabí caused an estimated 668 fatalities, 6,300 severe 
injuries and widespread damage. The coastal towns – particularly Pedernales, Canoa, Bahía 
de Caráquez, Manta, and Portoviejo, all centres of tourism and major hubs of activity in the 
region – suffered extensive damage after the main shock, with associated Modified Mercalli 
Intensities (MMI) of VI-VIII (USGS, 2016). The resulting peak ground accelerations (PGA) 
recorded at seismometer stations by the Instituto Geofísico (IG) ranged from 0.51g in 
Portoviejo to 1.55g in Pedernales in the most affected regions (IG, 2016). 

Between 24 May and 7 June an Earthquake Engineering Field Investigation Team (EEFIT) 
was deployed with the objective of surveying and recording observations and measurements 
that would help the scientific and professional communities understand the event and its 
consequences. For logistical reasons, the field mission focused on the Manabí region, 
primarily in the coastal area, although a day was spent investigating some major damage 
inland. The team surveyed structural damage to buildings and infrastructure, took micro-
tremor measurements, obtained aerial photography with drones, validated satellite-derived 
landslide data, and interviewed the vulnerable communities at the temporary shelters. The 
most salient observations and findings, discussed in detail in this report, are summarised 
below. 

Geological and Geotechnical Observations: 

• The event was related to the Nazca plate subduction activity, most likely additionally 
influenced by the presence of the local geodynamics of the Carnegie Ridge. Vast 
geophysical imagery efforts are yet to identify the geophysical asperities that may explain 
the pervasive seismicity pattern of the offshore historic seismicity epicentres. The seismic 
waves associated with the mainshock on the 16 April 2016 seem to have preferentially 
propagated along the Manabí coastal cordillera and basin in a southwestern direction from 
the inferred northern-most extent of the Carnegie Ridge. Conflicting studies exist, but the 
event seems to have mobilised an area last ruptured in 1906.  

• Few geological and local active faulting studies were found, including the absence of site 
condition reports for IG seismometer stations. It is crucial that future efforts focus on 
understanding regional site effects, particularly due to the complex geomorphology and 
high potential of liquefaction of the coastal and alluvial deposits. 

• TROMINO® microtremor tests were carried out throughout the affected region, with the 
aim of building on experiences from the EEFIT mission to Nepal in 2015 (Tallet-Williams 
et al., 2016), and collecting some site amplification effects data. The analyses showed that 
site amplification was unlikely to have been the sole contributor to the response 
magnitude, with topographic and other geomorphological effects also likely to have 
contributed.  

• Liquefaction and landslides also contributed heavily to the extent of the damage observed 
throughout the region, impacting on the initial emergency response. Liquefaction-induced 
damage was observed on structural foundations (e.g. tilting and seismic isolator damage 
due to large displacements). Landslides caused heavy damage to buildings located 
adjacent to slopes, and disrupted key road infrastructure.  

• In general, it was observed that appropriate mitigation measures were not taken against 
liquefaction, lateral spreading of river banks, and major man-made or natural slope 
failures, resulting in vast amounts of damage. Efforts to map all earthquake-induced 
hazards are required to provide the basis of a more resilient disaster management plan 
for the region. 

• The current seismic design code was published in 2015. It is mostly considered to be 
robust. However the zonation used to designate the seismic hazard factor for simplified 
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design approaches (i.e. when site-specific site response analysis is not carried out) seems 
oversimplified, and for the Manabí region may be unconservative. 

 

Structural Observations: 

• The two predominant building typologies observed during the mission in the affected 
region were (i) reinforced concrete (RC) frame with masonry infill walls and (ii) 
timber/bamboo frames with/without masonry infill (including vernacular buildings of 
quincha/bahareque). Other typologies (steel frame, unreinforced masonry, etc.) were seen 
in very small quantities. 

• Typically, the RC frames with masonry infill walls were formed of either: (i) non-engineered, 
typically low-rise (<6 storeys), or (ii) engineered, typically high-rise (≥6 storeys). 

• Very high levels of structural damage were seen in the non-engineered low-rise types of 
the RC frame with masonry infill walls buildings. The engineered high-rise buildings 
generally experienced low levels of structural damage and low to moderate levels of non-
structural issues. The most salient types of damage observed in the building typology RC 
frame with masonry infill were: 

• Inadequate design and detailing of RC moment frames; 
• Inadequate masonry infill design and construction; 
• Inadequate shear design and detailing; 
• Weak and soft storeys; 
• Inadequate laps in steel reinforcement; 
• Short columns; 
• Insufficient cover to steel reinforcement; 
• Pounding; 
• Inadequate detailing in plastic hinge region; 
• Inadequate securing of non-structural elements; and 
• Poor quality concrete. 

• The most salient types of damage observed in buildings using bamboo or timber were: 
• Rot and damage due to insects; 
• Inadequate connections between primary structural elements; and 
• Debris impact from adjacent buildings. 

• The team collected damage data from over 1,200 buildings using rapid surveys in Manta, 
Portoviejo, Jama, and Pedernales. The use of this data needs to bear in mind the number 
of limitations outlined in this report. 

• The team made a number of observations on the method of the immediate structural safety 
inspections carried out. It was observed that the ‘traffic light’ tagging system used in the 
affected areas varied in interpretation in the different cities and towns. 

 

 

 

 

 

 

 

  



 
 
 

The Mw7.8 Muisne Ecuador Earthquake of 16 April 2016 
iv 

Social Observations: 

The social survey team conducted structured questionnaire surveying in the earthquake 
refuge shelters from 28 May to 5 June 2016. The case study shelters were located in 
Portoviejo, Canoa, and Pedernales. A total of 120 families living in the temporary shelters 
were surveyed using a random sampling method. Questions were asked on demographic 
information, economic status, change of occupation, damaged house (year of construction, 
material type, ownership pattern), losses due to earthquakes, household preparedness, 
problems faced in the shelters, and future housing and livelihood recovery plans. The 
questionnaire was piloted in Manta shelters. Necessary ethical clearance was ensured before 
conducting the anonymous questionnaire surveying and only non-vulnerable adults were 
surveyed after taking oral consent.   

The results from the questionnaire survey suggest most people were: adult working-class (18-
65 years old) without higher educational background (mostly completing primary level); low-
earning households (US $75-300/month); involved in retail business, fishing, construction 
work, and day-labour jobs. In general, they became unemployed after the disaster and their 
first priority was to restart providing a decent livelihood for their families. The affected people 
were predominantly one-storey house owners made of reinforced concrete (RC)-
timber/bamboo. Most of the affected buildings were constructed in the 1990s and 2010s, and 
were one and two storeys. The families were happy with the facilities and services provided 
in the temporary shelters. None of the respondents were prepared for the earthquake disaster. 
The victims now want to continue their livelihood in urban areas. Primarily the victims from 
multi-storey buildings made of RC or RC-timber/bamboo want to relocate into single-storey 
buildings made of timber and bamboo. 

 

Disaster Management Observations: 

The key findings on disaster management are summarised as follows with the caveat that the 
mission did not involve a detailed assessment of the disaster response or management 
process. These findings are based on impressions obtained during the team's visit without the 
ability to corroborate broadly neither in time nor space. These observations are summarised 
as follows:  

• The initial emergency response was seen a relative success. It was rapidly executed, 
combining support from the international community as well as the local community led 
primarily by military agencies. 

• The disaster response seems to have been fairly inconsistent between cities and 
provinces, and between urban and rural areas. 

• Relocation of the population encountered many issues, aggravated by a sense of the lack 
of a clear longer-term recovery plan.  
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1. Introduction 

1.1. Mission Objectives and Organisation 

The Earthquake Engineering Field Investigation Team (EEFIT) was deployed to Ecuador on 
24 May 2016 and remained on site for approximately two weeks until 7 June. The objective of 
the team was to carry out a general assessment of structural damage to building stock, to 
bridges and to other facilities; to document and observe soil failures, landslides, liquefaction 
and faulting; to obtain measurements and acquire data whenever possible; to develop a view 
of the performance in response to the event, and; to investigate the socioeconomic context 
through interviews. Several disciplines were represented by the team members including 
structural engineering, architecture, social sciences, disaster risk management, catastrophe 
insurance, and geotechnical engineering. Included with the team’s equipment were a 
microtremor instrument (TROMINO®) and an unmanned aerial vehicle (UAV) or quadcopter 
drone. These instruments allowed the group to collect data useful in understanding the event. 

Prior to departure, the deployed team included seven official members: Guillermo Franco 
(lead), Harriette Stone (co-lead and structural engineering), Sebastian Kaminski (structural 
engineering), Jorge Lopez (structural engineering), Nina Jirouskova (geotechnical engineering 
and resilience civil engineering), Fiona Hughes (geotechnical engineering), and Bayes Ahmed 
(disaster recovery & social sciences). Additionally, Darren Chian (geotechnical engineering) 
supported the team remotely from his home location in Singapore. 

As we gathered local support, the team expanded to include co-author Major Manuel 
Querembás, director of the School of Military Engineering of the Ecuadorian Army. The access 
we enjoyed to restricted sites, remote rural areas, bridges, etc. was facilitated by Major 
Querembás and his superiors who made sure all doors were open to the team and safety was 
ensured throughout the mission. We also had access to military vehicles including ground 
transportation and a boat to assess damages to the Los Caras Bridge. As anyone who has 
done this kind of work in the field knows, this was a luxury that allowed the team to maximise 
its efficiency on the ground. In addition, Major Querembás provided treasured insights into the 
event as he had been involved in the response and assessment since the outset. 

Further support included the addition of Nicolas van Drunen, a student of architecture at Delft 
university in Holland, originally from Ecuador. Nicolas is part of INBAR (International Network 
for Bamboo and Rattan) and was assisting the Ecuadorian efforts to assess bamboo 
construction as an alternative to reinforced concrete. He joined the mission from the beginning 
assisting Bayes Ahmed with translation and in the preparation of the family surveys as well as 
providing insight into the bamboo reconstruction endeavours. Everth Luis Mera, student at the 
School of Civil Engineering of Portoviejo, also helped in the day to day activities of the mission. 

Authors of this report also include Carlos Molina Hutt who participated in reconnaissance of 
the event through the European Union’s Civil Protection unit prior to the EEFIT’s activities, 
and whose experience benefitted the posterior visit tremendously. Carlos also contributed to 
large portions of section 6.9.1 regarding the structural observations immediately after the 
event. These observations were important as many anomalies were detected in the tagging 
and demolition of certain areas. 

All in all, the team grew from the original eight official EEFIT mission members to the eleven 
authors of this report as the mission was ongoing. We could not have been luckier to assemble 
this great group of individuals and are deeply grateful for everyone’s contributions. In addition, 
we received great support from many individuals and organizations listed in the 
acknowledgement section. 
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The preparation of the mission was ongoing for about three weeks prior to deployment and 
included numerous activities securing transportation, instrumentation, local contacts, security, 
coordinating travel, etc. The mission itself extended over approximately two weeks and there 
was an intense period of data collection and writing directly after the return spanning another 
four weeks. This culminated with the preparation of an article for the World Conference on 
Earthquake Engineering, which was presented in Santiago de Chile in January 2017 (Franco 
et al., 2017). 

During the period of September 2016 until January 2017, the team concentrated on the 
analysis and summary of the datasets compiled resulting in a series of drafts that would 
comprise this report. These sections were compiled into a uniform draft report during the 
period of February to April 2017. This draft underwent several reviews culminating in its 
publication in late 2017. 

1.2. Report Structure 

The main report is divided into eight sections. The content of the following sections is 
summarised below: 

• Section 2 presents the seismotectonic setting in the region and collects information 
acquired from literature regarding the relevant context of the Muisne event. This 
section also presents the main characteristics of the mainshock as well as of the rest 
of the sequence observed during April 2016. This section was compiled by Chian, 
Jirouskova, and Hughes. 

• Section 3 focuses on the site effects interpretation, including an analysis of the role of 
site effects in the response observed in buildings. Site effects considered include soil 
amplification, topographic effect and basin effect. The interpretation of the microtremor 
tests conducted on site was done through the calibration of the measurements on other 
local geotechnical and geological data gathered post-mission through extensive work. 
This section was compiled by Chian, Jirouskova, and Hughes. 

• Section 4 describes the larger geotechnical failures observed on the terrain, including 
the investigation of earthquake-induced landslides, liquefaction and fault ruptures. This 
section presents the landslides investigation which was coordinated with the British 
Geological Survey (BGS) as part of a validation effort of their landslide identification 
system which employs satellite imagery. This section was compiled by Chian, 
Jirouskova, and Hughes. 

• Section 5 provides a link between the hazard-related sections and the damage 
discussions by reviewing historical building code provisions in Ecuador. This effort 
helps to understand the context for building performance in this event. It also provides 
some basis to the critical analysis of the adequacy of the current building code in 
Ecuador and how it might have performed under the level and type of hazards 
undergone. This section was compiled by Lopez and Jirouskova. 

• Section 6 summarises the work carried out during the many structural surveys that 
the team undertook during our mission. In this part of the report, we identify the 
different types of buildings observed as well as their most salient damage patterns, 
their detailing, and other features relevant to the effects of the earthquake. As in the 
geotechnical section, much of the effort on site consisted of capturing valuable and 
perishable data that then had to be compiled and analysed. These datasets involved 
the structural assessment of over a thousand buildings through quick inspection 
surveys. This section was compiled by Stone, Kaminski, and Lopez, with contributions 
from Molina Hutt. 

• Section 7 presents the observations from the surveys of key infrastructure assets, 
focusing mainly on roads and bridges, including critical facilities such as schools, and 
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commentaries on the performance of the electricity and power network, as well as the 
waste management systems. This section was compiled by Lopez, Hughes, and 
Jirouskova. 

• Section 8 describes the socio-economic aspects of the affected population. This 
primarily derives from household-based questionnaire interviews carried out at shelter 
sites distributed across the Manabí region. This section was compiled by Ahmed and 
van Drunen. 
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2. Seismotectonic Setting 

2.1. Tectonic Setting 

Ecuador is situated in a complex and very active tectonic setting, at a crossing between the 
Nazca, Cocos, Caribbean and South American Plates. These plates are dominantly oceanic 
and contain a diversity of interesting tectonic features. All three typical types of plate 
boundaries (convergent, divergent, transform) can be found in this region, including other 
features such as multiple triple junctions, hotspots, and subduction.  

Although the formation of most of the plates in the Caribbean region can be traced back to 
events in the Cenozoic (Cediel & Shaw, 2003), most of the present-day plates are fragments 
of their respective precursors. The Nazca plate, for example, is a remnant of the former 
Farallon plate which split during inter-plate spreading ~23 Ma (Lonsdale, 2005). The North 
Andean plate contains sedimentary rocks spanning from ~199 to ~23 Ma (Ramos, 1999), 
indicating the lengthy development of the rigid body that makes up the plate.  

Today, the plate motions of the Caribbean tectonic region are one of the most active in the 
world (Figure 2-1). Notably, the Nazca plate exhibits one of the world’s fastest rate of 
convergence along its eastern boundary with South America and the world’s fastest rate of 
divergence to its western boundary. Speeds, direction and rotation of the main regional 
tectonic plates are described in more details in Table 2-1. 

 
Figure 2-1 Tectonic plates speed distribution (Map from UNAVCO Plate Motion Calculator: 

http://sps.unavco.org/crustal_motion/dxdt/model/). 

Table 2-1 Caribbean system tectonic plates dynamics. 

Plate Speed (mm/yr) Direction (deg)* Rotation (deg/my) Model/Reference 
Nazca 77 46.8 0.695 

NNR-MORVEL 
(Argus & De Mets, 
2011; Bird, 2003) 

Caribbean 32 35.2 0.286 
North Andes 11 20.8 0.116 

Panama 33 33.7 0.317 
* directions are degrees from North clockwise. 

The Manabi region is part of the North Andean Microplate belonging to the Caribbean Plate 
system with the Galapagos, Panama and Caribbean microplates. The North Andes microplate 
is delimited from the South-American Plate by the East Andean Fault System to the East and 
the subduction boundary with the Nazca Plate to the West (see Figure 2-2).  

The geomorphology, tectonics and geological hazards of the Manabi region are largely 
governed by the plate movement of the Nazca subduction at an approximate rate of 60-
80mm/year. As shown in Figure 2-3, the Nazca plate dips progressively with increasing angles 
underneath the North Andean/ South American Plate with angles from 6° to 35°. 
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Another key feature of the local geodynamics is the Carnegie Ridge, linked to the Galapagos 
Islands. The Carnegie Ridge is 1,350km long and up to 300km wide. It faces the Manabi basin 
perpendicularly to the subduction axis and subducts along with the Nazca plate, under the 
Andean block (c.f. Figure 2-4 and Figure 2-5). Its specific geological and geodynamic 
properties render the local tectonics and geomorphology more complex to understand. There 
remains much scope for research to better understand the influence and interaction of this 
feature in the regional tectonic and seismogenic context. It is worthwhile noting however that 
the seismic waves associated to the mainshock on the 16 of April 2016 seem to have 
preferentially propagated along the Manabi coastal cordillera and basin in the South-West 
direction from the inferred North-most extent of the Carnegie Ridge (Figure 2-5).  

 

 
Figure 2-2 Major regional tectonic features and plate boundaries (after Trenkamp et al., 2002 and 

Bourgeois et al., 2013). BB’ and AA’ shown in Figure 2-3. Acronyms: CNSC-Cocos-Nazca Spreading 
Center; DGM-Dolores-Guayaquil Megashear; GGTB-Gulf of Guayaquil-Tumbes Basin; MAT-Middle 

America Trench; NAB- North Andean Block; PCT-Peru Chile Trench.  
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Figure 2-3 Subduction fault models for Section A-A’ (above) and B-B’ (below) shown in Figure 2-2 

respectively from Parra et al. (2016) and Trenkamp et al. (2002). 

 
Figure 2-4 3-D view of the two-tear model for the Carnegie Ridge collision featuring: a steep ESE-
dipping slab beneath central Colombia; a steep NE-dipping slab from 1ºS to 2ºS; the Peru flat slab 

segment south of 2ºS; a northern tear along the prolongation of the Malpelo fossil spreading centre; a 
southern tear along the Grijalva FZ; a proposed Carnegie flat slab segment (C.F.S.) supported by the 

prolongation of Carnegie Ridge (after Gutscher et al., 1999). Sections A-A’ and B-B’ mentioned in 
Figure 2-2 and 2-3 are also approximately shown indicatively.  
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Figure 2-5 (a) Inferred extension of the Carnegie Ridge under the North Andean block, also showing 
earthquake fault plane solutions from the Harvard CMT (centroid moment-tensor) catalogue (after 

Gutscher et al., 1999). The 16 of April 2016 mainshock epicentre location is shown as a red star, and 
the area of most concentrated damage highlighted in blue; (b) Tectonic detailing of spreading centre 

between the Carnegie ridge and Cocos Ridge (Gutscher et al., 1999). 

2.2. Local Faulting and Active Faulting  

The regional tectonics and geodynamics have progressively shaped the geology and 
geomorphology of the study area.  Possibly associated to the dynamics of the Carnegie ridge 
and the convergence of the North Andes and Nazca plates, local features have surfaced over 
geological times. Few studies have investigated these developments, and a lot remains to be 
done to fully understand the geological formation of this area and its associated tectonic 
features.  

According to one of the latest studies, i.e. Reyes (2008), two fault systems have broadly 
guided the evolution of the coastal cordillera: the Jipijapa system and the Jama system that is 
prolonged in the East of Río Esmeraldas (Figure 2-6). Each fault system consists of many 
smaller faults, formed by similar geodynamics. These faults therefore have properties in 
common, such as their general direction. The Jama and Jipijapa fault systems have been 
interpreted by Reyes (2008) as being separated by a feature newly identified in that study: 
The Rocafuerte-Flavio Alfaro Fault. The most active blocks, according to Reyes (2008), are 
Mache-Rioverde block, the Jipijapa, the Bahía-Jama and the Manta blocks, in decreasing 
order of total uplift. 

A study led by the USGS (Eguez et al., 2003) mapped the potentially active faults over the 
north-western region of Ecuador (Figure 2-7). This remains one of the most recent and 
comprehensive study of the region to date, although the newly proposed Rocafuerte-Flavio 
Alfaro Fault in Reyes (2008) has yet to be added. It is important that more work is carried out 
to consolidate the understanding of local fault activity and assess their impact on the seismic 
hazard in the region in the near future.  

 


