Author: The Institution of Structural Engineers
2 May 2012
Standard: £9 Members/Subscribers: Free
Members/Subscribers, log in to access
An IStructE account gives you access to a world of knowledge. Create a profile to receive details of our unique range of resources, events and training.
The Institution of Structural Engineers
While the advancement of computer based analysis continues to grow exponentially within the field of structural engineering, the tools that are used to analyse structures by hand are no less relevant. Many would argue that such tools are even more vital today than they have ever been if we are to fully understand the output of analysis applications. With this in mind, this Technical Guidance Note describes one of the most powerful analysis tools available: moment distribution. Moment distribution is a method by which statically indeterminate structures are analysed elastically. It’s based on the relative stiffness of elements that make up a structure and shifts bending moments from one section of the structure to another until they become balanced. Once this balance has been achieved, the forces and bending moments within the structure are modelled. (This article was updated in October 2016 to reflect errata issued since its original publication.)
When analysing structures it is important to adopt a methodical approach wherever possible. By breaking down the structure into manageable portions, the complexity of the analysis is reduced and thus becomes easier to control and review. By adopting such an approach, a seemingly insurmountable task becomes a much more approachable one. This Technical Guidance Note is a good practice guide for analysing and designing structures. It explains how structures are given form, modelled, analysed and designed. Mention is made of the need to rationalise the analysis process, but not at the expense of an economic design.
This Technical Guidance Note concerns the assessment of loads that are applied to retaining structures, typically generated from soil. These forces primarily come into play during the design of retaining wall structures, but they can also be found in water retaining structures and storage vessels.All of the guides in this series have an icon based navigation system, designed to aid the reader. (This article was updated in October 2016 to reflect errata issued since its original publication.)