Technical Guidance Note (Level 2, No. 9): Designing a reinforced concrete retaining wall

Author: The Institution of Structural Engineers

Date published

1 January 2014

Price

Standard: £9 + VAT
Members/Subscribers: Free

Buy Now

Added to basket

Back to Previous

Technical Guidance Note (Level 2, No. 9): Designing a reinforced concrete retaining wall

The Structural Engineer
Technical Guidance Note (Level 2, No. 9): Designing a reinforced concrete retaining wall
Date published

1 January 2014

Author

The Institution of Structural Engineers

Price

Standard: £9 + VAT
Members/Subscribers: Free

Buy Now
Author

The Institution of Structural Engineers

Although retaining walls have been the subject of two earlier Technical Guidance Notes; No. 8 (Level 1): Derivation of loading to retaining structures and No. 33 (Level 1): Retaining wall construction, their design has not been covered. This guidance note focuses specifically on the design of reinforced concrete gravity retaining walls.

There are three different forms of this type of wall, all of which are designed to resist overturning and sliding failure. The primary difference between them is their height. The taller the retaining wall, the more likely that counterforts and beams spanning between them will be necessary. This note describes how all of these forms of retaining wall can be designed.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Additional information

Format:
PDF
Pages:
4
Publisher:
The Institution of Structural Engineers

Tags

Technical Guidance Notes Technical Guidance Notes (Level 2) Technical Guidance Notes Technical Issue 1

Related Resources & Events

The Structural Engineer
Technical Guidance Note (Level 2, No. 22): Workmanship and quality inspections by the structural eng

Technical Guidance Note (Level 2, No. 22): Workmanship and quality inspections by the structural eng

This Technical Guidance Note covers the inspection of structural elements that are typically present within buildings during their construction and/or alteration phases.

Date - 2 September 2019
Author - Chris O'Regan
Price - £9
The Structural Engineer
Technical Guidance Note (Level 2, No. 6): Designing a laterally loaded masonry wall

Technical Guidance Note (Level 2, No. 6): Designing a laterally loaded masonry wall

Until relatively recently, masonry was the major load bearing component in a building structure. With the advent of steel and concrete frame technologies, masonry has become a part of a building’s cladding envelope and as such is more prone to being exposed to lateral loads than vertical ones. This Technical Guidance Note concerns the design of masonry walls that are subject to lateral loads i.e. they are being used as a cladding element. It will discuss the way in which the material is assessed against how it is being restrained and its geometry. All of these factors have an impact on the design of masonry walls as well as the mortar within them and the exposure conditions. This is discussed in Technical Guidance Note 27 (Level 1) and should be read in conjunction with this guide. (This article was updated in October 2016 to reflect errata issued since its original publication.)

Date - 1 June 2013
Author - The Institution of Structural Engineers
Price - £0/£9
The Structural Engineer
Technical Guidance Note (Level 2, No. 13): Masonry cladding to steel-framed buildings

Technical Guidance Note (Level 2, No. 13): Masonry cladding to steel-framed buildings

Since the invention of medium-storey framed structures in the late 1800s, there has been a need to clad them with a reasonably robust material that acts as an efficient barrier to the external environment. Masonry delivers the performance required of a cladding system on multiple fronts. It has therefore developed from a load-bearing element within structures to become a component of an envelope to larger framed buildings. This Technical Guidance Note introduces structural engineers to the interfaces between a primary structure that is principally formed from steelwork and a masonry cladding system.

Date - 2 October 2017
Author - C. O'Regan (AECOM)
Price - £0/£9