Author: H. Yu and Y. Wong (Arup)
2 January 2018
Standard: £9 + VAT Members/Subscribers: Free
Members/Subscribers, log in to access
H. Yu and Y. Wong (Arup)
Designers of the built environment are currently focused on creating new materials for construction, or innovating new construction methods with traditional construction materials. This is part of the very complex challenge of balancing environmental issues, such as energy use, with the ongoing market demand for reducing construction costs and time. This has led to a rapid rise in the uptake of timber, such as glued laminated timber (glulam) and cross-laminated timber (CLT), particularly in the design of multistorey residential buildings. This paper focuses on the design of tall timber construction for which many hybrid and composite forms of timber are being developed, resulting in a wide range of structural typologies.
Most structures in Europe are constructed using limit state design methods. Most of these structures are protected against some form of specified fire scenario. However, only a small minority of projects link these two major considerations together to form part of a unified structural fire design process. The Eurocodes provide designers with the necessary procedures to undertake an accurate and economical structural fire design, yet few engineers ever consider undertaking such an assessment. This article will focus on the load actions and combinations to be considered that enable the engineer to perform an adequate structural assessment for the accidental limit state in fire. It will also cover important considerations to ensure that any structural fire engineering strategy is appropriately aligned, and the key information is available within the contract chain to facilitate this performance-based approach.
A paper written as a collaboration between AECOM fire engineers and structural engineers in an effort to elevate the subject and improve our mutual understanding of structural performance in fire. Intended as a high-level introduction for practising structural engineers.