
Seismic Skills Meeting

THE KUMAMOTO JAPAN EARTHQUAKES

OF 14 AND 16 APRIL 2016

A FIELD REPORT BY EEFIT



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  i 

 

 

 

 

 

 

 

 

THE KUMAMOTO JAPAN EARTHQUAKES 
OF 14 AND 16 APRIL 2016 

 

 

 

Dr. Katsu Goda, University of Bristol (Team Leader and Editor) 
Dr. Grace Campbell, Arup 

Ms. Laura Hulme, Arup 
Mr. Bashar Ismael, University of Manchester 

Dr. Lin Ke, Willis Re Japan 
Ms. Rebekah Marsh, Mott MacDonald 

Prof. Peter Sammonds, University College London 

Dr. Emily So, University of Cambridge 
 

 

 

Report prepared in association with: 
Dr. Yoshihiro Okumura, Kyoto University 

Miss Saki Yotsui, Kyoto University 
Dr. Maki Koyama, Gifu University 

Dr. Nozar Kishi, Karen Clark & Company 

 
 
 

Report reviewed by:  

Mr. Antonios Pomonis, World Bank, Consultant; Social, Urban, Rural & Resilience (GSURR) 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  ii 

 

Acknowledgements 

The EEFIT Kumamoto team would like to express our sincere gratitude to the following individuals 
and organisations for their support prior to, during and following this mission, without whom we would 
not have been able to carry out the field trip and research effectively.   

• Ms. Berenice Chan, Institution of Structural Engineers 

• Dr. Tristan Lloyd, AIR Worldwide 

• Dr. Sean Wilkinson, Newcastle University 

• Prof. Junji Kiyono, Kyoto University 

• Dr. Takashi Kiyota, University of Tokyo 

• Prof. Shinji Toda, Tohoku University 

• Miss Zoe Mildon, University College London 

Thanks are also due to the following organisations for funding the participation of team members:  
• EPSRC (EP/I01778X/1) for funding Dr. Katsu Goda, Prof. Peter Sammonds, Dr. Emily So, 

and Mr. Bashar Ismael 

• Arup for funding Dr. Grace Campbell and Ms. Laura Hulme 

• Mott MacDonald for funding Ms. Rebekah Marsh 

• Willis Towers Watson for funding Dr. Lin Ke 

EEFIT would like to acknowledge the on-going support of corporate sponsors: AECOM, AIR 
Worldwide, Arup, British Geological Survey, ch2m, GUY CARPENTER, RMS, Mott MacDonald, 
Sellafield Ltd, and Willis Towers Watson. 
 
  



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  iii 

 

Contents 

 

Acknowledgements ................................................................................................................................. ii 

Contents  .................................................................................................................................................iii 

List of Figures .......................................................................................................................................... v 

List of Tables ........................................................................................................................................... x 

1 Introduction .............................................................................................................................. 1 
1.1 Preamble 1 
1.2 EEFIT Kumamoto team and collaboration 2 
1.3 References 4 

2 Geology and Tectonics ............................................................................................................ 5 
2.1 Japan tectonic setting 5 
2.2 Active faults in Kyushu Island 6 
2.3 Historical crustal earthquakes 6 
2.4 Hinagu and Futagawa Faults 7 
2.5 Mainshock surface ruptures 7 

2.5.1 Right-lateral strike-slip surface ruptures 9 
2.5.2 Normal surface ruptures 13 
2.5.3 Other activated faults 15 
2.5.4 Fault rupture-caldera interaction 15 

2.6 Geological setting 16 
2.7 Conclusions on the geology and tectonics 16 
2.8 References 17 

3 Ground Motions ..................................................................................................................... 19 
3.1 Earthquake sequence 19 
3.2 Finite-fault models and estimated ground deformation 22 
3.3 Strong ground motion characteristics 25 

3.3.1 Strong motion characteristics in the near-fault region 25 
3.3.2 Regional ground motion characteristics 32 
3.3.3 Comparison of observed recordings and ground motion prediction equations 35 

3.4 Conclusions on the ground motions 35 
3.5 References 37 

4 Building Damage ................................................................................................................... 38 
4.1 Building regulations in Japan 38 
4.2 Damage to timber buildings in Mashiki Town 39 
4.3 Ground-induced building damage in Minami Aso Village 42 
4.4 Damage to reinforced concrete buildings 44 
4.5 Damage to steel frame buildings and hybrid construction 46 
4.6 Damage to schools and hospitals 46 
4.7 Damage to buildings in the city centre of Kumamoto 48 
4.8 Damage to traditional buildings 50 

4.8.1 Kumamoto Castle 50 
4.8.2 Aso Shrine 50 
4.8.3 Concrete temples 51 

4.9 Systematic damage survey in Mashiki Town 52 
4.10 Conclusions on the building damage 55 
4.11 References 56 

 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  iv 

 

5 Infrastructure Damage and Ground Failures ......................................................................... 57 
5.1 Bridges 57 

5.1.1 Oogiribata Bridge 57 
5.1.2 Kuwatsuru Bridge 59 
5.1.3 Ooginosaka Bridge 59 
5.1.4 Tawarayama Bridge 60 
5.1.5 Bridges along the Kiyama River 60 

5.2 Tunnels 62 
5.3 Roads 62 
5.4 Dams 64 
5.5 Landslides 64 
5.6 Slope stability measures and retaining structures 68 
5.7 Liquefaction 71 

5.7.1 Kumamoto Port 71 
5.7.2 Akitsu River 73 
5.7.3 Kamiezu Lake 75 

5.8 Conclusions on the infrastructure damage and ground failures 76 
5.9 References 76 

6 Relief and Recovery .............................................................................................................. 77 
6.1 Emergency response 77 

6.1.1 Organisation of city level and regional disaster management 77 
6.1.2 Support from other prefectures 77 
6.1.3 Earthquake support programs 80 

6.2 Plans for recovery 85 
6.3 Conclusions on the relief and recovery 86 
6.4 References 87 

 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  v 

 

List of Figures 

Figure 1.1 Main locations in Kumamoto Prefecture. 1 
Figure 1.2 EEFIT Kumamoto team in Minami Aso with Dr. Yoshihiro Okumura, Miss Saki Yotsui, 

and Dr. Nozar Kishi. 3 
Figure 2.1 Tectonic setting and seismicity of Japan. 5 
Figure 2.2 Quaternary faults and earthquakes in Central Kyushu Island. 7 
Figure 2.3 (a) Surface rupture mapping and (b) offset measurements. 8 
Figure 2.4 Location map of the surface rupture sites visited by the EEFIT in the field. 8 
Figure 2.5 (a) Google Earth imagery showing rice paddy fields before the mainshock and (b) 

aerial photo orthomosaic from the UAV survey after the earthquake showing the 
strike-slip surface rupture. 10 

Figure 2.6 (a) Aerial survey image of a section of the strike-slip rupture in rice paddy fields and 
(b) corresponding shaded relief map (3 cm grid spacing) of the DEM derived from SfM 
for the same area. The insert (c) shows the concept and method of SfM. 11 

Figure 2.7 Shaded relief DEM of the area shown in Figure 2.5. 12 
Figure 2.8 (a) Right-lateral offset in rice paddy field and (b) rupture and fresh ploughing. 13 
Figure 2.9 Around 1 m north-side down vertical offset west of the farm house and (b) normal 

faulting rupture continuing through the farmer’s field, with 0.5 m to 1 m vertical offsets 
measured. 13 

Figure 2.10 (a) Google Earth imagery showing en-echelon extensional surface ruptures in the 
north of Aso Caldera. (b) and (c) field photos of the vertical offsets (~1-2 m) at the 
locations shown in (a). 14 

Figure 2.11 Extensional normal surface ruptures in the southwest of Aso Caldera. 14 
Figure 2.12 InSAR image of the 2016 Kumamoto earthquakes with identified linear surface 

ruptures. 15 
Figure 2.13 Geological map of Central Kyushu Island. 16 
Figure 2.14 Schematic illustration of slip partitioning from depth to the surface that occurred 

during the 2016 Kumamoto earthquake. 17 
Figure 3.1 (a) Locations of the Futagawa-Hinagu Faults and (b) digital elevation model for 

Kumamoto. 19 
Figure 3.2 Number of earthquakes with MJ > 3 that occurred in the Kumamoto region during the 

foreshock-mainshock-aftershock period. 20 
Figure 3.3 Spatial distribution of earthquakes in the Kumamoto region: (a) 1 April 2016 to 31 May 

2016, (b) 1 April 2016 to 13 April 2016, (c) 14 April 2016, (d) 15 April 2016, (e) 16 
April 2016, and (f) 17 April 2016 to 31 May 2016. 21 

Figure 3.4 Characteristics of foreshock-mainshock and mainshock-aftershock sequences: (a) 
Gutenberg-Richter models and (b) modified Omori models. 22 

Figure 3.5 Finite-fault models by GSI (2016) for the foreshock and mainshock and (b) finite-fault 
model by Asano and Iwata (2016) for the mainshock. 23 

Figure 3.6 Estimated elastic deformation profiles based on the GSI finite-fault model for the 
foreshock: (a) NS deformation, (b) EW deformation, and (c) UD deformation. 24 

Figure 3.7 Estimated elastic deformation profiles based on the GSI finite-fault model for the 
mainshock: (a) NS deformation, (b) EW deformation, and (c) UD deformation. 24 

Figure 3.8 Estimated elastic deformation profiles based on the DPRI finite-fault model for the 
foreshock: (a) NS deformation, (b) EW deformation, and (c) UD deformation. 24 

Figure 3.9 Estimated elastic deformation profiles based on the DPRI finite-fault model for the 
mainshock: (a) NS deformation, (b) EW deformation, and (c) UD deformation. 24 

Figure 3.10 Soil characteristics at KMMH16 (Mashiki): (a) borehole log and (b) shear wave 
velocity profile. 26 

Figure 3.11 Observed ground motion records at KMMH16 (Mashiki): (a) acceleration time-
histories for the foreshock, (b) velocity time-histories for the foreshock, (c) 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  vi 

 

acceleration time-histories for the mainshock, and (d) velocity time-histories for the 
mainshock. 27 

Figure 3.12 5%-damped response spectra at KMMH16 (Mashiki): (a) foreshock records and (b) 
mainshock records. 27 

Figure 3.13 Surface-to-borehole ratios of Fourier amplitude spectra at KMMH16 (Mashiki): (a) 
foreshock records and (b) mainshock records. 28 

Figure 3.14 Surface-to-borehole ratios of Fourier amplitude spectra at KMMH16 (Mashiki) for 
different earthquakes during the 2016 Kumamoto foreshock-mainshock-aftershock 
sequence: (a) NS components, (b) EW components, and (c) UD components. 28 

Figure 3.15 Soil characteristics at KMM006 (Kumamoto): (a) borehole log and N blow count 
profile and (b) shear wave velocity profile. 29 

Figure 3.16 Observed ground motion records at KMM006 (Kumamoto): (a) acceleration time-
histories for the foreshock, (b) velocity time-histories for the foreshock, (c) 
acceleration time-histories for the mainshock, and (d) velocity time-histories for the 
mainshock. 29 

Figure 3.17 5%-damped response spectra at KMM006 (Kumamoto): (a) foreshock records and (b) 
mainshock records. 30 

Figure 3.18 Soil characteristics at KMM008 (Uto): (a) borehole log and N blow count profile and 
(b) shear wave velocity profile. 30 

Figure 3.19 Observed ground motion records at KMM008 (Uto): (a) acceleration time-histories for 
the foreshock, (b) velocity time-histories for the foreshock, (c) acceleration time-
histories for the mainshock, and (d) velocity time-histories for the mainshock. 31 

Figure 3.20 5%-damped response spectra at KMM008 (Uto): (a) foreshock records and (b) 
mainshock records. 31 

Figure 3.21 Ground motion maps based on observed recordings for the foreshock: (a) PGA, (b) 
SA at 0.3 s, (c) SA at 1 s, and (d) SA at 3 s. 33 

Figure 3.22 Ground motion maps based on observed recordings for the mainshock: (a) PGA, (b) 
SA at 0.3 s, (c) SA at 1 s, and (d) SA at 3 s. 33 

Figure 3.23 Rotated response spectra for the foreshock: (a) PGA, (b) SA at 0.3 s, (c) SA at 1 s, 
and (d) SA at 3 s. 34 

Figure 3.24 Rotated response spectra for the mainshock: (a) PGA, (b) SA at 0.3 s, (c) SA at 1 s, 
and (d) SA at 3 s. 34 

Figure 3.25 Comparison of the observed ground motions with the prediction equations by Boore 
et al. (2014) for the foreshock: (a) PGA, (b) SA at 0.3 s, (c) SA at 1 s, and (d) SA at 3 
s. 36 

Figure 3.26 Comparison of the observed ground motions with the prediction equations by Boore 
et al. (2014) for the mainshock: (a) PGA, (b) SA at 0.3 s, (c) SA at 1 s, and (d) SA at 3 
s. 36 

Figure 4.1 Location map of EEFIT structural damage surveys. 38 
Figure 4.2 Measured 5%-damped spectral accelerations in Mashiki Town. 40 
Figure 4.3 Aerial view of Mashiki Town prior to the 2016 Kumamoto earthquakes. 40 
Figure 4.4 Aerial view of Mashiki Town after the 2016 Kumamoto earthquakes. 40 
Figure 4.5 Damage to timber frame houses in Mashiki Town: (a) complete collapse of a pre-1981 

structure, (b) bottom storey collapse, (c) significant drift, and (d) soft-storey collapse 
mechanism of a modern building. 41 

Figure 4.6 Aerial view of a student complex in the Kawayo district of Minami Aso Village. 42 
Figure 4.7 Damage to timber frame buildings in the Kawayo district of Minami Aso Village: (a) 

heavily damaged house in Area A, (b) Building 1 in Area B, (c) Building 2 in Area B, 
and (d) Building 3 in Area B with visible traces of the ground rupture that crossed 
underneath. 43 

Figure 4.8 Damage to RC frame buildings: (a) soft-storey collapse of an apartment building in 
Kumamoto City, (b) west façade of the Uto City Office, (c) column damage to the Uto 
City Office, and (d) structural layout of the Uto City Office. 44 

Figure 4.9 Mashiki Town Office (strengthened RC frame): (a) strengthened south elevation and 
(b) damage to link bridge. 45 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  vii 

 

Figure 4.10 Well-performing RC frame apartment building in Mashiki Town: (a) general view and 
(b) zoom showing no evidence of fine cracks. 45 

Figure 4.11 Steel building failures in Mashiki Town: (a) bottom-storey drift to the southern side of 
Road 28 and (b) four-storey collapse to the northern side of Road 28. 46 

Figure 4.12 Mashiki Junior High School: (a) RC frame retrofitted with steel bracing (undamaged), 
(b) buckled bracing to the gymnasium structure, (c) significant drift of link corridor, and 
(d) detailed picture of the same link corridor. 47 

Figure 4.13 Minami Aso Village Nursery: (a) regular RC frame construction and (b) damage to a 
movement joint between blocks (yellow-tagged). 47 

Figure 4.14 Aerial view of Kumamoto downtown and Kumamoto Castle. 48 
Figure 4.15 Measured 5%-damped spectral accelerations in Kumamoto City (KMM006). 49 
Figure 4.16 Building damage in Kumamoto city centre: (a) damaged cladding being repaired, (b) 

buildings next to castle moat (ground damage), (c) shear cracking to façade, and (d) 
damage to contents and systems of a car elevator tower. 49 

Figure 4.17 Damage to Kumamoto Castle: (a) aerial view from northeast, (b) main building, (c) 
north-western corner collapse, and (d) south embankment collapse. 50 

Figure 4.18 Damage to Aso Shrine: (a) collapsed entrance structure and (b) photograph of the 
same structure prior to the earthquakes. 51 

Figure 4.19 Damage to a concrete temple in Mashiki Town: (a) a view from the eastern side and 
(b) failure of a column head at the north-western corner. 51 

Figure 4.20 Examples of surveyed timber buildings in Mashiki Town: (a) damage grade 1 or 2, (b) 
damage grade 3, (c) damage grade 4), and (d) damage grade 5. 52 

Figure 4.21 Damage survey results in Mashiki Town. 54 
Figure 4.22 Damage survey results for timber buildings only in Mashiki Town. 54 
Figure 4.23 Proportion of damaged buildings according to the structural material and their 

damage grade in the EEFIT survey in Mashiki Town. 55 
Figure 4.24 Proportion of damaged steel and timber buildings according to the number of storeys 

and damage grade. 55 
Figure 5.1 Location map of damaged bridges or other infrastructure and of ground failures that 

were visited during the EEFIT mission. 57 
Figure 5.2 Interaction between the landslide and bridge abutments of the Oogiribata Bridge: (a) 

view from the western end of the bridge looking east at the toe of the landslide, (b) 
looking west at the eastern pier from the underside of the bridge on the eastern end, 
and (c) looking west at the western pier. 58 

Figure 5.3 Failure of the bearings beneath the Oogiribata Bridge: (a) view of the failed bearings 
from the underside of the bridge and (b) view from the top of the bridge. 58 

Figure 5.4 Foundation connection damage of the Kuwatsuru Bridge: (a) failure of deck-abutment 
connection at the eastern end and (b) damage to the bearing at the eastern end. 59 

Figure 5.5 Foundation connection damage of the Ooginosaka Bridge: (a) surface connection at 
the northern end; the relative movement occurred in N-S and E-W directions, (b) 
underside of the northern bridge abutment showing oblique shearing of the bearings, 
and (c) very little damage to the bearings at the top of the concrete columns. 59 

Figure 5.6 Damaged foundation connections of the Tawarayama Bridge: (a) movement of the 
bearings at the eastern abutment and (b) damage to the foundations of the abutment 
of the west end. 60 

Figure 5.7 Settlements of flood defences and damage to bridges along the Kiyama River: (a, d) 
settled embankments relative to the bridge abutments, (b) embankment settlements 
causing collapse of concrete protection, (c, f) vertical displacement between the road 
on the embankments and the bridges, and (e) damage to bridge piers. 61 

Figure 5.8 Shearing on the side wall of the Tawarayama Tunnel showing a NEE-SWW 
compression. 62 

Figure 5.9 Vertical road displacements in the northern area of Aso Caldera. 62 
Figure 5.10 Road damage along Road 28: (a) compression features on the road surface, (b) 

bulking at the road bend, either caused by compressional fault movement or bulging 
at the toe of a slope failure, (c) cracking and collapse of the road at the crest of a 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  viii 

 

slope failure, (d) compression features at road-bridge connection and sinkhole, (e) 
shearing seen on the road surface trending roughly NE-SW, and (f) compression 
features on the road surface in E-W direction and signs of vertical ground shaking 
revealed as displaced tarmac cover. 63 

Figure 5.11 Damage of the Oogiribata Dam: (a) reservoir, (b) failure of the retaining walls at the 
spillway, (c) compression features in the dam wall showing a NS compression, and 
(d) shearing features in the dam wall. 64 

Figure 5.12 Slope failures around Aso Caldera caused by the Kumamoto earthquakes. 65 
Figure 5.13 Debris flows on the steep sides of Aso Caldera. 65 
Figure 5.14 Geology of Kumamoto Prefecture. 65 
Figure 5.15 Large landslides near the Aso Bridge and Choyo Bridge. 66 
Figure 5.16 Giant earthflow that destroyed the Aso Bridge. 66 
Figure 5.17 Debris flow near the Choyo Bridge. 67 
Figure 5.18 Landslide at the Oogiribata Bridge looking south at the failure from the bridge deck. 67 
Figure 5.19 Extensive cracking of roads. 68 
Figure 5.20 Damage to infrastructure facilities near the entrance of the Tawarayama Tunnel. 68 
Figure 5.21 Slope stability measures along Road 28 at the westerly road blockage: (a) rock bolts 

and wire mesh supporting boulders and other fallen debris from the slope failed, (b) 
giant concrete retaining wall remained standing although large amounts of debris 
have fallen behind the structure, (c) deformed retaining wall with vertical and 
horizontal struts, and (d) cracking on the road at the crest of a slope failure downslope 
from the road. 69 

Figure 5.22 Failure of sprayed shotcrete during slope failure: (a) eastern edge of the giant 
landslide at the Oogiribata Bridge and (b) near-vertical slope with shotcrete. 69 

Figure 5.23 Retaining wall failures in the Kawayo district of Minami Aso Village. 70 
Figure 5.24 Slumping of the soil behind a retaining wall in the Kawayo district causing it to 

collapse. 70 
Figure 5.25 Retaining wall failure in Mashiki Town. 71 
Figure 5.26 Location of the Kumamoto Port. 72 
Figure 5.27 Sand boils at the Kumamoto Port. 72 
Figure 5.28 Liquefaction-induced failures at the Kumamoto Port. 72 
Figure 5.29 Liquefaction-induced failures near the ferry terminal. 73 
Figure 5.30 Damage to the steel overpass bridge at the ferry terminal due to liquefaction-induced 

settlement. 73 
Figure 5.31 Locations of the Akitsu River and the Kamiezu Lake. 74 
Figure 5.32 Widespread of liquefaction at: (a) bottom of a foundation and (b) a tennis court. 74 
Figure 5.33 Ground failures due to liquefaction: (a) ground settlement and (b) tension cracks. 74 
Figure 5.34 Lateral displacement of a bridge along the Akitsu River. 75 
Figure 5.35 Bearing failure of an apartment building near the Akitsu River. 75 
Figure 5.36 Liquefaction-induced lateral spreading at the Kamiezu Lake. 75 
Figure 6.1 Cabinet Office disaster response mechanism. 78 
Figure 6.2 Areas affected by the earthquake are supported by personnel from different 

prefectures. 78 
Figure 6.3 Notice explaining preventative measures for ‘Economy Class Syndrome’ found in 

evacuation centres. 80 
Figure 6.4 A summary of the earthquake support programs for the people affected by the 2016 

Kumamoto earthquakes. 81 
Figure 6.5 Mashiki Town evacuation centre. 81 
Figure 6.6 Outdoor bathing facility operated by the Japan Ground Self Defense Force at the 

Mashiki Town evacuation centre. 82 
Figure 6.7 Vehicle post office and the office of pet boarding facility at the Mashiki Town 

evacuation centre. 82 
Figure 6.8 Observed conditions inside a gymnasium at the Uki City evacuation centre. 83 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  ix 

 

Figure 6.9 A family of three personalising their accommodation at the Uki City evacuation centre.
 83 

Figure 6.10 An example of a notice board at the Uki City evacuation centre detailing the daily 
timetable for group activities, meal times, and health care services. 83 

Figure 6.11 Shigeru Ban cardboard column and curtain temporary shelter design. 84 
Figure 6.12 Raised ‘beds’ made of paper boxes. 84 
Figure 6.13 Chart showing the timeline for different goals set out by the Kumamoto City Office for 

housing and social services. 86 
Figure 6.14 The new logo for the Kumamoto Prefecture's earthquake reconstruction efforts, 

featuring the prefectural mascot Kumamon. 87 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  x 

 

List of Tables 

Table 1.1 Summary of earthquake damage due to the 2016 Kumamoto sequences. 2 
Table 1.2 EEFIT-Kumamoto members. 2 
Table 1.3 Visited locations by the EEFIT-Kumamoto members. 3 
Table 3.1 Finite-fault parameters of the GSI (2016) models for the foreshock and mainshock. 23 
Table 3.2 Comparison of the observed and estimated deformations at the Kumamoto and 

Choyo GPS stations for the mainshock. 23 
Table 4.1 Summary of the Japanese building regulations for seismic design. 39 
Table 4.2 Damage survey data collection form. 52 
Table 6.1 Direct and indirect deaths resulting from the two events by municipality. 79 
Table 6.2 Trend of indirect deaths by municipality. 80 
Table 6.3 The number of temporary housing planned and constructed. 85 
 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  1 

 

1 Introduction 

1.1 Preamble 
A moderate-size earthquake struck the Kumamoto Prefecture of Kyushu Island, Japan on 14 April 
2016 (21:26 PM local time). The Japan Meteorological Agency (JMA) magnitude MJ of 6.5 was 
registered (moment magnitude Mw6.1). The fault rupture was originated from the northern segment of 
the Hinagu Fault. Intense shaking was recorded in the eastern part of Kumamoto Prefecture, and 
major earthquake damage was caused in Mashiki Town near the epicentre. Subsequently, on 16 April 
2016 (1:25 AM local time), a larger MJ7.3 earthquake (Mw7.1) occurred along the Futagawa Fault (NE 
of the Hinagu Fault). This earthquake caused significantly greater damage in wider areas near the 
fault (e.g. Mashiki Town, Nishihara Village, and Minami Aso Village). The crustal deformation due to 
the mainshock was observed as ground surface ruptures at many locations along the Futagawa Fault. 
At several places, ground deformation up to 2 m was reported (Shirahama et al., 2016). 
Retrospectively, the 14 April 2016 and 16 April 2016 events are considered as foreshock and 
mainshock, respectively, and both are of right-lateral strike-slip type occurring at shallow depths. It is 
important to note that the foreshock and mainshock were originated from close but different active 
faults (Kato et al., 2016). The JMA intensity of 7 (highest intensity in the JMA intensity scale) was 
recorded in Mashiki Town during both foreshock and mainshock (i.e. double shock impact). 
Numerous buildings had collapsed due to the double shock in Mashiki Town. The earthquake 
sequence also triggered several moderate earthquakes (and some damage) at remote locations, such 
as Yufu City and Kokonoe Town in Oita Prefecture (both about 60 km N-NE of Mashiki Town). 
Moreover, an active aftershock sequence was observed in Kumamoto City. 

 
Figure 1.1 Main locations in Kumamoto Prefecture (image source: Google Earth). 

The earthquakes caused significant tangible and intangible loss. As of July 2016, the number of 
fatalities stood at 69 of which 9 were due to the foreshock (49 caused by direct causes, such as 
building collapse and landslides and 20 due to indirect causes) increasing to 115 in October 2016 and 
eventually reaching 225 due to many earthquake-related deaths among the displaced (see Section 6), 
while the total number of injured persons was 1,747 (Fire and Disaster Management Agency, 2016; 
Table 1.1). More than 180,000 people were evacuated immediately after the mainshock. The total 
economic loss was estimated to be 2.4 to 4.6 trillion Japanese Yen (Cabinet Office of Government of 
Japan, 2016), while insurance pay-out exceeded 3 billion US Dollar (General Insurance Association of 
Japan, 2016). Due to the Kumamoto earthquake sequence, 8,050 houses were destroyed, whereas 
24,147 buildings suffered major damage (Fire and Disaster Management Agency, 2016; Table 1.1). 
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The majority of the collapsed buildings were timber houses with heavy roof, which were constructed 
according to the pre-1981 seismic design provisions (Nakashima and Chusilp, 2003). Several cultural 
heritage sites (e.g. Kumamoto Castle and Aso Shrine) were also damaged severely. The earthquakes 
triggered numerous landslides in the mountainous areas of the Kumamoto region, and destroyed 
major infrastructure and facilities. In the plain areas of Kumamoto, several sections of Kyushu 
Expressway (bridges and road surface cracks) were damaged due to the earthquakes, resulting in 
major disruption of the regional traffic network. The operation of Kyushu Shinkansen was also 
interrupted due to the earthquakes after the mainshock because one Shinkansen train derailed in the 
south of Kumamoto railway station that was travelling at 80 km/h when the mainshock struck. The 
railway tracks of the Aso line were destroyed by landslides, and the repairs will take a long time. 

Table 1.1 Summary of earthquake damage due to the 2016 Kumamoto sequences (as of 1 July 2016; Fire and 
Disaster Management Agency, 2016). The numbers include the loss and damage caused by the 14 April 2016 
foreshock. 

Prefecture Deaths Major 
injury 

Minor 
injury 

Collapsed 
houses 

Severely 
damaged 
houses 

Partially 
damaged 
houses 

Non-residential 
structural 
damage 

Kumamoto 69(1) 364 1,316 8,044 24,274 115,702 1,799 
Oita 0 4 24 6 140 4,336 27 
Others 0 8 31 0 3 255 3 
Total 69 376 1,371 8,050 24,417 120,293 1,829 

(1) This number includes the fatalities due to indirect causes. 

The 2016 Kumamoto disaster was caused by multiple cascading geological hazards. The primary 
damage was due to the intense shaking and ground deformation of the foreshock-mainshock 
sequence (which occurred only 28 hours apart). In the near-fault region, the effects of the ground 
deformation were remarkable; buildings and infrastructure that were right above the fault rupture were 
severely damaged (Goda et al., 2016). The secondary damage was induced by landslides and other 
ground failures, including liquefaction and lateral spreading along rivers and in coastal areas. The 
earthquake damage was widespread spatially over the rural areas of Kumamoto Prefecture. In 
particular, simultaneous damage/destruction to multiple key infrastructures, such as Aso Bridge, 
Oogiribata Bridge, Choyo Bridge, and Tawarayama Tunnel, disconnected main access routes (e.g. 
Road 57 and Road 28) between areas inside and outside Aso Caldera. As of June 2016, major 
detours were required to visit places inside Aso Caldera from Kumamoto City. In particular, this has 
caused significant difficulty and stress to evacuees and recovery activities in Minami Aso Village. 

1.2 EEFIT Kumamoto team and collaboration 
To learn key lessons from the observed damage and impact due to the Kumamoto earthquakes, an 
Earthquake Engineering Field Investigation Team (EEFIT) mission was organised and deployed by 
the Institution of Structural Engineers. The EEFIT-Kumamoto members include: Dr. Katsu Goda 
(team leader), Dr. Grace Campbell, Ms. Laura Hulme, Mr. Bashar Ismael, Ms. Rebekah Marsh, Dr. 
Lin Ke, Prof. Peter Sammonds, and Dr. Emily So. The affiliation and technical expertise of the 
members are summarised in Table 1.2.  

Table 1.2 EEFIT-Kumamoto members. 
Name Affiliations Expertise 
Dr. Katsu Goda (KG) 
(Team Leader) 

Senior Lecturer in Civil Engineering, 
University of Bristol 

Engineering seismology & ground 
motion 

Dr. Grace Campbell (GC) Geologist, Arup Earthquake geology & geophysics 
Ms. Laura Hulme (LH) Structural engineer, Arup Structural engineering 

Mr. Bashar Ismael (BI) PhD student, University of 
Manchester Geotechnical engineering 

Dr. Lin Ke (LK) Geotechnical Engineer, Willis 
Towers Watson Geotechnical engineering 

Ms. Rebekah Marsh (RM) Geologist, Mott MacDonald Engineering geology 

Prof. Peter Sammonds (PS) Professor of Geophysics, University 
College London Geophysics & earthquake mechanism 

Dr. Emily So (ES) Senior Lecturer, University of 
Cambridge Earthquake impact & recovery 
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The mission was generously supported by many colleagues from Japan and the US (see the full list of 
the contributors on the Acknowledgements page). In particular, Dr. Yoshihiro Okumura and Miss Saki 
Yotsui from Kyoto University, Dr. Maki Koyama from Gifu University, and Dr. Nozar Kishi from Karen 
Clark & Company participated in the field work (Figure 1.2). The main earthquake reconnaissance 
survey was conducted between 22 May and 26 May 2016. Dr. So extended her stay to continue the 
interviews and hearing from the evacuees as well as disaster management officials from various 
organisations. The itinerary of the EEFIT-Kumamoto mission is summarised in Table 1.3, and the 
main locations visited are marked in Figure 1.1.  

 
Figure 1.2 EEFIT Kumamoto team in Minami Aso with Dr. Yoshihiro Okumura (1st from left, front), Miss Saki 
Yotsui (3rd from left, front), and Dr. Nozar Kishi (2nd from left, back). 

Table 1.3 Visited locations by the EEFIT-Kumamoto members. 

Date Locations visited EEFIT 
member Accompanied by 

Day 1 (22 May) Kumamoto City (downtown) and Mashiki Town All - 

Day 2 (23 May) Aso City and Minami Aso Village  All Dr. Okumura, Miss 
Yotsui, Dr. Kishi 

Day 3 (24 May) 
team 1 

Mashiki Town and Nishihara Village (fault rupture and 
geotechnical damage) 

KG, GC, 
PS, RM - 

Day 3 (24 May) 
team 2 

Kumamoto Port, Uto City, and Mashiki Town 
(geotechnical damage and building damage) 

BI, LK, 
LH, ES 

Dr. Koyama, Miss 
Yotsui, Dr. Kishi 

Day 4 (25 May) 
team 1 

Mashiki Town and Nishihara Village (faulting and 
infrastructure/geotechnical damage) 

GC, BI, 
RM, PS 

Dr. Koyama, Miss 
Yotsui, Dr. Kishi 

Day 4 (25 May) 
team 2 

Kumamoto City and Mashiki Town (faulting and 
building damage) 

KG, LH, 
LK Dr. Kishi 

Day 4 (25 May) 
team 3 

Mifune Town social welfare council, Mifune Junior High 
School, Kumamoto City Sun Life and Gender Equality 
Centre, Kumamoto Prefecture Office (interviews, 
evacuation centre visits, and meetings with NGOs) 

ES Dr. Koyama, Miss 
Yotsui 

Day 5 (26 May) 
team 1 Mashiki Town (damage survey) KG, LH, 

GC Dr. Kishi 

Day 5 (26 May) 
team 2 

Nishihara Village (geotechnical and infrastructure 
damage along Road 28) 

BI, LK, 
RM, PS - 

Day 5 (26 May) 
team 3 

Sojo University (meeting with AIJ), Minateras (Mashiki 
Town interaction information centre), Mashiki Town 
gym (evacuation centre visits and interviews) 

ES Dr. Koyama, Miss 
Yotsui 

Day 6 (27 May)  Uki City welfare centre, library, hall and community 
centre (evacuation centre visits and interviews) ES Dr. Koyama, Miss 

Yotsui 

Day 7 (28 May) Kumamoto City international centre and university 
(meetings with academics and city officials) ES Dr. Koyama, Miss 

Yotsui 

Day 8 (29 May) Nishihara Village school (meeting with village officers) ES Dr. Koyama, Miss 
Yotsui 
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The field investigations were focused upon: (i) building damage, (ii) infrastructure and geotechnical 
damage, (iii) fault rupture, and (iv) disaster response and recovery. The main objectives of the 
mission were to make observations regarding:  

1. Earthquake damage to buildings and infrastructure in the near-fault region (Mashiki Town, 
Nishihara Village, and Minami Aso Village). The particular focus was to relate observed 
damage and experienced ground shaking. For this purpose, building damage surveys were 
conducted in Mashiki Town (note: seismograms at the Mashiki Town Office recorded ground 
motions due to the foreshock and mainshock, and the JMA intensity of 7 was registered for 
both foreshock and mainshock).  

2. Infrastructure damage in the near-fault region, caused by large-scale landslides and slope 
failures (e.g. Road 57 blockage and Aso Bridge collapse). 

3. Damage caused by liquefaction and lateral spreading along rivers and near port areas. 
4. Fault rupture due to the earthquake, which appeared on ground surface. 
5. Earthquake response and recovery activities by emergency response teams, evacuees, 

volunteers, and non-governmental organisations. 
6. Establish contacts and exchange information with the Japanese academic community involved 

in the post-event activities.  
Our observations and investigations highlight considerable earthquake shaking and deformation 
demand in the near-fault region, and provide insights that are useful for enhancing community 
resilience against major earthquake disasters.  

In this report, the following topics are discussed: 

• Section 2: Geological and tectonic observations (main contributors – GC and PS) 

• Section 3: Ground motion observations (main contributor – KG) 

• Section 4: Building damage observations (main contributor – LH) 

• Section 5: Infrastructure and geotechnical observations (main contributors – BI, LK, and RM) 

• Section 6: Response and recovery observations (main contributors – ES and Miss Yotsui) 
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2 Geology and Tectonics 

This section presents the geological and tectonic setting of the 2016 Kumamoto earthquakes. The 
seismological aspects of the earthquake sequence are discussed in Section 3.  

2.1 Japan tectonic setting 
Japan is one of the most seismically and volcanically active regions in the world. It owes this intense 
activity to its location, at the intersection of three tectonic plates: the Eurasia Plate in the west, the 
Pacific Plate in the east, and the Philippine Sea Plate in the southeast (Figure 2.1). Along Japan’s 
northern Pacific coast, the boundary of the Pacific and Eurasia Plates forms the Japan Trench 
(Figure 2.1). In the south, the boundary between the Philippines Sea Plate and the Eurasia Plate 
forms the Nankai Trough. These two boundaries are subduction zones along which the dense ocean 
crust of the Pacific and Philippines Sea Plates sinks beneath the less dense continental crust of the 
Eurasia Plate. Global Positioning System (GPS) velocity measurements relative to stable Eurasia 
indicate that the Philippines Sea and Pacific Plates move W to NW at rates of ~55 mm/year and 90 
mm/year, respectively (Figure 2.1).  

 
Figure 2.1 Tectonic setting and seismicity of Japan. The yellow star indicates the epicentre of the Mw7.1 16 April 
2016 Kumamoto mainshock (United States Geological Survey, 2016).  

Figure 2.1 shows the distribution of earthquakes with moment magnitude (Mw) equal to and greater 
than 7.0 in Japan since 1900. Convergence along the subduction boundaries is accommodated by 
shortening of the main subduction interface zones and also by active shallow crustal faults (less than 
20 km depth) that occur up to hundreds of kilometres from the main subduction interface within the 
Eurasia Plate. The Kumamoto earthquakes are an example of the latter plate-interior type of faulting. 
Though both types of faulting (subduction and plate-interior) have generated large-magnitude, 
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destructive earthquakes in Japan, the plate-interior crustal events are less well documented and less 
well known (see Section 2.3). The best-documented, instrumentally-recorded earthquake, which was 
similar to the Kumamoto mainshock in terms of magnitude, depth, and faulting mechanism, was the 
1995 Mw6.9 Kobe earthquake (Kanamori, 1995), which killed over 5,500 people. In addition to the 
1995 Kobe earthquake, therefore, the Kumamoto earthquakes provide a relatively unique example of  
plate-interior crustal faulting in Japan.  

2.2 Active faults in Kyushu Island  
Kyushu Island, which is the epicentral location of the April 2016 Kumamoto earthquakes, is the 
southernmost main island of Japan. This region experiences two dominant tectonic movements: 1) N-
S extension, associated with active volcanism and crustal thinning and 2) E-W compression and right-
lateral shear, related to the oblique motion of the Philippines Sea Plate relative to the stable Eurasia 
Plate. Figure 2.2 shows the active faults in the northern and central parts of Kyushu Island (in red) as 
well as the epicentres of the 2016 Kumamoto foreshock and mainshock (yellow circles). In general, 
there are two dominant orientations of faulting: E-W and NE-SW (Figure 2.2). The N-S extension is 
largely accommodated by the E-W trending Central Kyushu rift zone, which is bounded by and 
contains sub-parallel faults. Major volcanic centres, such as Aso Volcano/Caldera and Unzen 
Volcano, align approximately E-W along the rift zone (Figure 2.2). In the southwest, the central rift is 
thought to continue down to the Okinawa Trough (Figure 2.1), the active back-arc spreading centre 
behind the Ryukyu Island arc (Figure 2.1), whereas at its eastern extent it continues to Beppu Bay 
(Figure 2.2). Further east of Beppu Bay, the tectonic style changes from multiple distributed ~5-10 km 
long sub-parallel E-W oriented faults, to the major NE-SW oriented Median Tectonic Line (MTL), an 
active transform (strike-slip) fault (Figure 2.2). In Shikoku Island (Figure 2.1), the MTL is very active 
(Okumura, 2016), however, the activity is replaced with normal faulting onshore in Kyushu (Figure 
2.2). According to Okumura (2016), the majority of the southern margin of the Central Kyushu rift has 
not been active in the Quaternary (since around ≤12,000 years before present), with the exception of 
the Futagawa and Hinagu Faults (denoted by F and H, respectively, in Figure 2.2). These faults were 
known to be active as determined from paleo-seismological studies (Chida, 1979; Shimokawa et al., 
1999), and were the causative faults of the Kumamoto foreshock and mainshock. 

2.3 Historical crustal earthquakes 
The long-documented historical and pre-historical (paleo-seismological) records of Japanese 
earthquakes, which span many hundreds to several thousands of years, indicate that major events 
occur approximately every ~180 years on average along the Nankai Trough subduction interface (e.g. 
Moreno et al., 2016). In contrast, the records for large-magnitude, plate-interior crustal earthquakes 
are relatively less well known and less complete (Moreno et al., 2016). Figure 2.2 shows some of the 
known historical events with Mw7.0 or greater, though as expected considering the dates of these 
events, little is known about the fault sources or seismological aspects of these earthquakes and the 
impacts they had. One of the most recent historical damaging earthquakes in Kumamoto was the 
M6.3 1889 Kumamoto earthquake. Additionally, the 1792 M6.4 Shimabara-Shigatusaku (Unzen) 
earthquake (Figure 2.2) triggered a lava-dome flank collapse in the Unzen volcanic area, which in 
turn generated a big tsunami. The tsunami, which hit both sides of Ariake Bay (Figure 2.2), and 
caused over 15,000 deaths. This sequence of disasters is known as the Shimabara Catastrophe and 
is considered the worst disaster in the history of volcanic hazards in Japan (Inoue, 2000). The Aso 
volcanic region shares many similarities in terms of seismicity, faulting, and volcanism to the Unzen 
volcanic region, therefore, the Shimabara Catastrophe is an important analogy to consider when 
assessing earthquake-, volcano-, landslide-, and tsunami-hazard potential in the Aso volcanic region.  

In more recent decades, the Research Group for Active Faults in Japan (1980, 1991) have 
comprehensively mapped and characterised many of the active faults in Japan, including Kyushu 
Island, however, there remains few clear examples of historical or pre-historical earthquake surface 
ruptures preserved in the landscape in Kyushu. The Kumamoto mainshock, which generated very 
clear, well-preserved surface ruptures, therefore, provides a unique opportunity to gain insight into the 
relationship between slip on plate-interior crustal faults in a single earthquake, and the long-term trend 
of the topography on Kyushu Island, which has developed over many thousands of years.  
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Figure 2.2 Quaternary faults and earthquakes in Central Kyushu Island (Okumura, 2016). 

2.4 Hinagu and Futagawa Faults 
Sudden slip on the Hinagu and Futagawa Faults caused the Kumamoto foreshock and mainshock, 
respectively. Both faults had been previously mapped by the Research Group for Active Faults of 
Japan (1980, 1991) and are included in seismic hazard assessments by the Headquarters for 
Earthquake Research Promotion (2016). The Futagawa Fault had been mapped extending 
approximately 70 km WSW-ENE from Uto Peninsula in the southwest to the crater rim of Aso Caldera 
in the east (Figure 2.2). The Hinagu Fault had been mapped to extend approximately 80 km NNE-
SSW and at its northern extent it merges with the western extent of the Futagawa Fault (Figure 2.2). 
The two faults accommodate both the E-W compression driven by the Philippine Sea Plate 
subduction and the N-S extension of the Central Kyushu rift. Based on the observed geological 
offsets along the faults, the dominant sense of slip is known to be right-lateral strike-slip with a lesser 
component south-side-up vertical displacement, associated with the N-S extension of the Kyushu rift. 
The uplift of the Kyushu Mountains in the south is due to the normal (south-side-up) component of the 
fault movement (Figure 2.2). Both faults dip steeply (~60-80°) with the WSW-ENE striking Futagawa 
Fault dipping NNW, and the NNE-SSW striking Hinagu Fault dipping WNW. 

2.5 Mainshock surface ruptures 
Two types of surface rupturing were observed after the Kumamoto mainshock: 1) right-lateral strike-
slip displacements and 2) vertical offsets with a normal/extensional sense of motion. Seismological 
observations indicate that the mainshock was a predominantly strike-slip faulting event, with a lesser 
extensional component (e.g. Asano and Iwata, 2016; Kubo et al., 2016; Yagi et al., 2016) and, as 
expected, the dominant types of surface ruptures observed in the field (e.g. Kumahara et al., 2016; 
Shirahama et al., 2016; Toda et al., 2016) have been horizontal right-lateral displacements with lesser 
vertical offsets (e.g. Figure 2.3). The field rupture offset measurements and offset distributions are 
consistent with what has been observed from the available seismological, e.g. strong motion and 
broadband teleseismic waveforms, and geodetic data, e.g. high-resolution satellite imagery and 
Interferometric Synthetic Aperture Radar (InSAR).  

Ariake 
Sea 

Unzen 

Aso 
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Figure 2.3 (a) Surface rupture mapping and (b) offset measurements (Lin et al., 2016). 

 

 
Figure 2.4 Location map of the surface rupture sites visited by the EEFIT in the field. The number headings on 
the map correspond to four sites mentioned in the main text (base map: Shuttle Radar Topography Mission 
SRTM-1).  

(a) 

(b) 
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The EEFIT members made field observations and measurements of both types of mainshock surface 
ruptures along the Futagawa Fault. These observations are presented in the subsections below, 
starting in the southwest of the Futagawa Fault (~3.3 km east of Mashiki Town) and ending in the east 
within the NW and SW regions of Aso Caldera. Figure 2.4 shows the surface-rupture locations visited 
by the team in the field.  

2.5.1 Right-lateral strike-slip surface ruptures 

At site 1 (32.7945ºN, 130.8306ºE; see Figure 2.4), a right-lateral strike-slip surface rupture was 
preserved along a ~400 m long segment of the main fault ~3.3 km east of Mashiki Town. The rupture 
tracked ENE-WSW across dry rice paddy fields, displacing a series of NE-SW oriented crop rows and 
field borders (Figure 2.5). In combination, these features form a perfect grid in order to quantitatively 
measure the sense and amount of earthquake surface deformation at this site. 

Along this section of the rupture, the team carried out an aerial photography survey, using a DJI 
Phantom 2 unmanned aerial vehicle (UAV). The digital photos collected from the survey were used to 
generate an orthorectified photomosaic of this section of the rupture, in addition to a high-density 
point cloud of elevation data and digital elevation model (DEM). These data were derived from post-
processing of the digital photos using the technique structure from motion (SfM) implemented in 
computer software. For further details of the SfM technique and data processing in relation to fault-
rupture mapping, see Johnson et al. (2014).  

Figure 2.6 and Figure 2.7 present the shaded relief DEM of the rupture section. The high-resolution 
DEM reveals the complexity of the surface rupture and enables quantitative measurements of the 
offsets to be made. Some preliminary measurements using this dataset are shown in Figure 2.7. 
Each consecutive rice paddy border X to Z has been right-laterally offset by an average of ~1 m 
where they cross the fault (Figure 2.7). The measurements of slip along this section of the surface 
rupture (in the field and from the DEM) are consistent with those estimated by Lin et al. (2016) at 
approximately the same location (site 3 in Figure 2.3). 

Figure 2.8a shows a field view of one of the right-laterally offset rice paddy fields. The earthquake 
surface slip in this field, at the time of the mission, had been exceptionally recorded and preserved. 
Examples of this type of exposure and preservation are limited, yet they are crucial in order to enable 
comparisons between the amount of slip measured from geodetic methods, such as InSAR and GPS. 
Figure 2.8b, which shows a farmer ploughing the far northwest fields where the surface rupture is 
preserved, however, illustrates the transient nature of these exceptional features and highlights the 
importance of near-immediate post-earthquake field missions in order to make these types of 
measurements. 
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Figure 2.5 (a) Google Earth imagery showing rice paddy fields before the mainshock and (b) aerial photo 
orthomosaic from the UAV survey after the earthquake showing the strike-slip surface rupture. 
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Figure 2.6 (a) Aerial survey image of a section of the strike-slip rupture in rice paddy fields and (b) corresponding 
shaded relief map (3 cm grid spacing) of the DEM derived from SfM for the same area. The insert (c) shows the 
concept and method of SfM (Johnson et al., 2014). The approximate areas of (a) and (b) are outlined in Figure 
2.5. 

(a) 

(b) 

(c) 
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Figure 2.7 Shaded relief DEM of the area shown in Figure 2.5. White and black arrows point to generally 
‘pushed-up’ and ‘dropped-down’ sections, respectively.  
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Figure 2.8 (a) Right-lateral offset in rice paddy field and (b) rupture and fresh ploughing (see Figure 2.5 for the 
photo locations). 

2.5.2 Normal surface ruptures 

At site 2 (32.8219ºN, 130.8847ºE; see Figure 2.4) surface ruptures extended through the south side 
of a farmer’s property (Figure 2.9). The ruptures were oriented ENE-WSW and recorded a normal 
sense of motion. The team measured an average of ~1 m and ~0.5 m (north-side-down) vertical 
offset, in the garden south of the farm house, and in the field west of the farm house, respectively. 
These measurements of slip are consistent with those made by other field teams along the main fault 
trace. 

At sites 3 and 4 (32.9563ºN, 131.0364ºE and 32.8362ºN, 131.0202ºE, respectively; see Figure 2.4) in 
the north and southwest of Aso Caldera, respectively, left-stepping en-echelon surface ruptures that 
are essentially parallel to the strike of the main fault strike were observed (Figure 2.10 and Figure 
2.11). This rupture geometry and sense of offset are consistent with predominant right-lateral strike-
slip and N-S extension (as indicated from the post-earthquake surface deformation maps derived from 
InSAR data). The vertical slip measured at this location ranged from around 0.3 m to 2 m, depending 
on the local topography and near-surface site conditions. 

 
Figure 2.9 (a) Around 1 m north-side-down vertical offset west of the farm house and (b) normal faulting rupture 
continuing through the farmer’s field, with 0.5 m to 1 m vertical offsets measured.  

(a) 

(b) 

(a) (b) 
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Figure 2.10 (a) Google Earth imagery showing en-echelon extensional surface ruptures in the north of Aso 
Caldera (site 3 in Figure 2.4). (b) and (c) field photos of the vertical offsets (~1-2 m) at the locations shown in (a). 

 
Figure 2.11 Extensional normal surface ruptures in the southwest of Aso Caldera (site 4 in Figure 2.4). 

(b) 

(a) 

(c) 
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2.5.3 Other activated faults 

In addition to the surface ruptures observed along the main Futagawa Fault, several hundred other 
previously unmapped secondary faults (not directly connected with the main fault) were activated in 
association with either the mainshock or strong aftershocks (Fujiwara et al., 2016; Figure 2.12). This 
widespread minor faulting has been mapped using satellite InSAR data. In particular, many linear 
surface ruptures have been mapped in the northwest of the outer rim of Aso Caldera indicating that 
the caldera structure was strongly influenced by minor surface rupturing, with a normal component. 
These new features have been identified in the Central Kyushu region from line of sight surface 
deformation maps derived using methods in InSAR as shown in Figure 2.12. According to Fujiwara et 
al. (2016), many of these features are consistent with the field mapping (Shimahara et al., 2016).  

2.5.4 Fault rupture-caldera interaction 

As noted in the previous sections, the mainshock rupture continued ~10 km northeast into and 
terminated within Aso Caldera. This new section of the fault trace had not been mapped previously. 
Since fault length (and depth) and earthquake-magnitude potential typically scale with one another 
(the longer and deeper the fault, the greater the earthquake magnitude; Wells and Coppersmith, 
1994), this new fault section provides important information to inform future seismic hazard 
assessments. 

There are two other significant aspects of the fault-caldera interaction worth mentioning. The first is 
that new volcanic and geothermal activities were documented at several sites in the Aso region 
immediately after the Kumamoto earthquakes, strongly suggesting that there was a direct link 
between faulting and volcanic activity, a phenomena that is not yet well understood. The second is 
that, the rupture termination within the caldera, and the lack of aftershocks observed in this region, 
have both been linked with the presence of a shallow (~5 km depth) magma chamber beneath Aso 
(e.g. Lin et al., 2016; Uchide et al., 2016; Yagi et al., 2016). Both of these observations also have 
important implications for future seismic and volcanic hazard assessments in Kyushu.  

 
Figure 2.12 InSAR image of the 2016 Kumamoto earthquakes with identified linear surface ruptures (Fujiwara et 
al., 2016). 
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2.6 Geological setting 
There are two dominant types of geology in Central Kyushu Island: Neogene-Quaternary (~22 million 
years old to present day) volcanics and sediments in the north, and Mesozoic age (240-65 million 
years old) subduction-related (accretionary) sediments in the south (Figure 2.13). These two distinct 
geological regions form a boundary along the ENE-WSW Quaternary Median Tectonic Line (Figure 
2.13). 

The near-surface geology influences the strong ground motions generated in earthquakes. Kumamoto 
City and Mashiki Town, which both suffered structural damage, are located north of the Kumamoto 
alluvial plain (Figure 2.13). The Kumamoto plain is a Holocene (less than 12,000 years before 
present) alluvial plain comprised of marine and non-marine sediments. The northern half of 
Kumamoto City and Mashiki Town are located north of the plain on older Pleistocene (2.58 million 
years old to ~12,000 years before present) fluvial terraces and on a pyroclastic flow. The Futagawa 
Fault cuts the lava plateau and continues along the boundary between the Kumamoto plain and 
Cretaceous (145 to 66 million years old) rocks. The Hinagu Fault in the south juxtaposes the alluvial 
plain with the bedrock and continues north through bedrock to merge with the Futagawa Fault. In 
summary, it is estimated that 450-900 m of sediments have accumulated over a million years under 
the Kumamoto plain including the regions immediately north of the Hinagu and Futagawa Faults 
(Okumura, 2016). It is the sediment thickness in these areas that probably caused the strong ground 
motion amplifications of the foreshock and mainshock at Kumamoto City and, in particular, measured 
at the seismic recording stations in Mashiki Town (see Section 3).  

 
Figure 2.13 Geological map of Central Kyushu Island. Red line indicates the approximate trace of the 16 April 
mainshock rupture along the Futagawa Fault (Seamless Geological Map of Japan, 2016). 

2.7 Conclusions for the geology and tectonics 
The main results from the geological and tectonic observations of the Kumamoto earthquakes are as 
follows:  

1. The dominant tectonic forces across Central Kyushu Island are N-S extension and right-lateral 
shear. These forces are driven by the SE to NW subduction of the Philippines Sea Plate 
beneath the stable Eurasia Plate along the Nankai Trough.  

2. Both the Hinagu and Futagawa Faults were known by geologists and seismologists and the 
faults were already (well-characterised and) included in the national seismic hazard 
assessments.  

16 April 2016 
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3. The peak ground shaking intensity and spatial distribution of shaking estimated by the national 
seismic hazard model, considering a large-magnitude earthquake scenario on the Futagawa 
Fault, has matched well the Mw7.1 Kumamoto mainshock event.  

4. The mainshock earthquake resulted in extensive normal and right-lateral strike-slip surface 
ruptures along the length of the ENE-WSW Futagawa Fault. Figure 2.14 shows a sketch of 
how the normal and strike-slip surface ruptures may be related to one another at depth along 
the main Futagawa Fault (Toda et al., 2016). 

5. The previously unmapped NW section of the Futagawa Fault in Aso Caldera has implications 
for future seismic hazard assessments. 

6. The Kumamoto mainshock is a relatively less frequent example of damaging plate-interior (non-
subduction) shallow crustal earthquakes in Japan, which is useful for understanding crustal 
rheology and rupture dynamics in the region.   

7. The mainshock has raised various questions regarding fault-caldera interaction. New volcanic 
activity was triggered by the earthquake. It has also been hypothesised that a shallow (5 km 
deep) magma chamber beneath Aso Caldera played a role in rupture termination, and resulted 
in the absence of aftershocks.  

8. The geology of the near-fault source region is complex. The large ground accelerations 
recorded at Kumamoto City and Mashiki Town during the foreshock and mainshock (up to and 
greater than 1 g) are likely to have resulted from wave amplification in thick alluvial deposits 
that exist immediately north of the Futagawa Fault (see Section 3). 

 
Figure 2.14 Schematic illustration of slip partitioning from depth to the surface that occurred during the 2016 
Kumamoto earthquake (Toda et al., 2016).  
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3 Ground Motions 

3.1 Earthquake sequence 
The Futagawa Fault stretches from the outskirt of Aso Caldera to Uto Peninsula (Headquarters for 
Earthquake Research Promotion, 2016). Its orientation is ENE-WSW. The total length of the fault 
exceeds 70 km and consists of three segments: Futagawa segment (circa 29 km), Uto segment (circa 
20 km), and Uto Peninsula segment (circa 27 km). On the other hand, the Hinagu Fault touches on 
the Futagawa Fault in the north (near Mashiki Town) and extends to Yatsushiro Sea in the south (NE-
SW orientation). The total length exceeds 80 km, consisting of three segments: Takano-Shirahata 
segment (circa 16 km), Hinagu segment (circa 40 km), and Yatsushiro Sea segment (circa 30 km). 
Both Futagawa and Takano-Shirahata segments are of right-lateral strike-slip type. Historically, there 
were damaging earthquakes in the Kumamoto region. For instance, the M6.3 1889 earthquake 
caused notable damage in Kumamoto City (20 deaths, 54 injuries, and 239 house collapses; 
Headquarters for Earthquake Research Promotion, 2016). However, the damage severity and 
earthquake impact of the 2016 sequence are far greater. Figure 3.1a shows the Futagawa segment 
and the Hinagu (Takano-Shirahata) segment, based on the active fault database by the National 
Institute of Advanced Industrial Science and Technology (2015). In Figure 3.1a, epicentral locations 
of the 14 April 2016 foreshock and the 16 April 2016 mainshock (based on the unified JMA catalogue, 
available from Hi-net at http://www.hinet.bosai.go.jp/) as well as locations of Kumamoto City, Mashiki 
Town, Nishihara Village, and Minami Aso Village are shown. The thin grey lines represent political 
boundaries of the municipalities in the Kumamoto region. Figure 3.1b shows a digital elevation model 
of the Kumamoto region based on the GDEM database 
(http://www.jspacesystems.or.jp/library/archives/ersdac/GDEM/E/index.html). 

 
Figure 3.1 (a) Locations of the Futagawa-Hinagu Faults and (b) digital elevation model for Kumamoto. 

The most recent seismic hazard assessments by the Headquarters for Earthquake Research 
Promotion (2016) have taken into account rupture scenarios from the Futagawa and Hinagu Faults. In 
the assessments, the scenario magnitude for the Futagawa segment is set to Mw7.0 with occurrence 
probability of less than 1% in 30 years, noting that there is a possibility that all three segments of the 
Futagawa Fault rupture simultaneously (in this case, the magnitude is estimated to be in the range of 
Mw7.5 to Mw7.8). On the other hand, the scenario magnitude for the Hinagu (Takano-Shirahata) 
segment is considered to be Mw6.8 with unknown occurrence probability; similar to the Futagawa 
Fault, there is a possibility that all three segments of the Hinagu Fault rupture simultaneously, 
resulting in a Mw7.7 to Mw8.0 earthquake. Moreover, because of the adjacency of the Futagawa 
segment and the Takano-Shirahata segment, the earthquake might rupture both faults, potentially 
leading to a Mw7.8 to Mw8.2 event. Importantly, during the 2016 Kumamoto earthquake sequence, 
numerous events occurred initially along the Takano-Shirahata segment (e.g. 14 April foreshock), and 
then along the Futagawa segment (e.g. 16 April mainshock). 

A prolific sequence of earthquakes was observed in the Kumamoto region, after the triggering 
foreshock event occurred on 14 April 2016. Figure 3.2 shows the temporal variation of earthquakes 

http://www.hinet.bosai.go.jp/
http://www.jspacesystems.or.jp/library/archives/ersdac/GDEM/E/index.html
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having MJ > 3 over a period between 13 April 2016 and 18 April 2016, while Figure 3.3 shows the 
spatial distribution of earthquakes occurring in different time periods. The MJ6.5 foreshock induced an 
active sequence of dependent events (including a MJ6.4 event on 15 April 2016). From the spatial 
distribution of the events that occurred between the foreshock and the mainshock (Figure 3.3d), the 
triggered events are clustered along the Hinagu Fault. Subsequently, the mainshock occurred on the 
southern tip of the Futagawa Fault, and triggered an even more active subsequence of aftershocks 
(Figure 3.2 and Figures 3.3e and 3.3f). The aftershock sequence is not only concentrated along the 
Futagawa-Hinagu Faults but also in the Aso region. The migration of seismic activities over a 
relatively wide spatial scale is a notable feature of the 2016 Kumamoto earthquake sequence (Kato et 
al., 2016). 

Using the observed earthquake data in the Kumamoto region, statistical analysis of aftershocks is 
carried out by applying the Gutenberg-Richter law (i.e. frequency-magnitude characteristics of an 
aftershock sequence) and the modified Omori law (temporal decay of an aftershock occurrence rate; 
Guo and Ogata, 1997; Shchervakov et al., 2005). It is considered that the JMA catalogue is complete 
above MJ3.5. In fitting these seismological models, the entire catalogue is divided into two parts: 
events that occurred between the foreshock and the mainshock (72 earthquakes), and events after 
the mainshock (248 earthquakes). The results are shown in Figure 3.4. Due to the longer period and 
the larger triggering event, the mainshock-aftershock sequence is more prolific than the foreshock-
mainshock sequence. The b-value of the mainshock-aftershock sequence is steeper and has a value 
close to a typical b-value of 1.0 (Guo and Ogata, 1997). For the modified Omori law, the temporal 
decay parameter (p-value) for both datasets is estimated as 1.0, which is broadly consistent with the 
past studies of aftershock statistics (Guo and Ogata, 1997). 

 
Figure 3.2 Number of earthquakes with MJ > 3 that occurred in the Kumamoto region during the foreshock-
mainshock-aftershock period. 
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Figure 3.3 Spatial distribution of earthquakes in the Kumamoto region: (a) 1 April 2016 to 31 May 2016, (b) 1 
April 2016 to 13 April 2016, (c) 14 April 2016, (d) 15 April 2016, (e) 16 April 2016, and (f) 17 April 2016 to 31 May 
2016. 
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Figure 3.4 Characteristics of foreshock-mainshock and mainshock-aftershock sequences: (a) Gutenberg-Richter 
models and (b) modified Omori models. 

3.2 Finite-fault models and estimated ground deformation 
Finite-fault source models, which are obtained through source inversion analysis, provide plausible 
images of earthquake rupture processes by achieving the consistency between observed data and 
geophysical model predictions (e.g. geodetic, teleseismic, strong motion, and tsunami). After the 
Kumamoto foreshock and mainshock, several such models have been developed and some were 
published in the literature (Asano and Iwata, 2016; Kubo et al., 2016; Yagi et al., 2016). For example, 
the Geospatial Institute of Japan (GSI) developed finite-fault models for the Kumamoto foreshock and 
mainshock based on GEONET GPS observations. The finite-fault parameters of the GSI models for 
the foreshock and mainshock are summarised in Table 3.1. The geometry of the finite-fault models 
for the foreshock and mainshock is shown in Figure 3.5a, and is consistent with the fault strike by the 
National Institute of Advanced Industrial Science and Technology (Figure 3.1a). The estimated slip 
values for the foreshock and mainshock are 0.62 m and 3.50 m, respectively (assumed to be uniform 
over the fault plane). For the mainshock, at the Kumamoto GEONET station (32.8421ºN, 
130.7648ºE), 0.75 m horizontal deformation in the ENE direction and 0.2 m downward deformation 
were recorded, while at the Choyo GEONET station (32.8707ºN, 130.9962ºE), 0.97 m horizontal 
deformation in the SW direction and 0.23 m upward deformation were recorded. These observations 
serve as important constraints in developing finite-fault models for the mainshock, indicating that the 
fault strike (approximately SW-NE to WSW-ENE) should lie between the Kumamoto and Choyo 
stations. 

Using the geometry and slip distribution of a finite-fault model, elastic deformation due to an 
earthquake can be calculated using the Okada (1985) equations. The analytical formulae allow the 
estimation of NS, EW, and UD components of ground surface deformation. The results of the 
calculated elastic deformation profiles based on the GSI finite-fault models are shown in Figure 3.6 
and Figure 3.7 for the foreshock and mainshock, respectively. The results display the spatial 
deformation patterns clearly. The estimated NS, EW, and UD deformations at the Kumamoto station 
are 0.00 m (northward), 0.85 m (eastward), and -0.30 m (downward), while those at the Choyo station 
are -0.57 m (southward), -0.50 m (westward), and 0.25 m (upward); see Table 3.2. These estimated 
deformations are in agreement with the observed GPS measurements, which is expected because 
these data were used in calibrating the finite-fault models. The GSI models are particularly useful for 
estimating permanent deformation at unmonitored locations due to the earthquake. 

As a part of this investigation, another set of finite-fault models for the foreshock and mainshock 
developed by Asano and Iwata (2016) is implemented. These are referred to as DPRI (Disaster 
Prevention Research Institute) models. The DPRI models were calibrated based on strong motion 
observations and can provide finer details of the earthquake slip along the fault plane (e.g. asperities). 
The models are particularly useful for predicting strong ground motions at unobserved locations. The 
DPRI model for the mainshock is shown in Figure 3.5b (note: the counterpart for the foreshock is not 
shown intentionally because the fault dip angle is steep (89º); i.e. it is essentially shown as a line). 
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The estimated elastic deformation profiles based on the DPRI models are shown in Figure 3.8 and 
Figure 3.9 for the foreshock and mainshock, respectively. In comparison with the GSI’s mainshock 
model, the dimensions of the DPRI mainshock model are larger (and spread over both Futagawa and 
Hinagu Faults) and consequently, overall its mean slip (about 1.87 m) and the estimated deformations 
are smaller. The predicted NS, EW, and UD deformations at the Kumamoto station are 0.39 m 
(northward), 0.19 m (eastward), and -0.19 m (downward), while those at the Choyo station are -0.12 
m (southward), -0.02 m (westward), and 0.04 m (upward); see Table 3.2. Therefore, the DPRI model 
may underestimate the deformations near the eastern end of the fault plane (nevertheless, the DPRI 
model is expected to predict high-frequency ground motions well). 

Table 3.1 Finite-fault parameters of the GSI (2016) models for the foreshock and mainshock. 

 Upper-left corner Length 
(km) 

Width 
(km) 

Strike 
(º) 

Dip 
(º) 

Rake 
(º) 

Slip 
(m) Mw Latitude 

(º) 
Longitude 

(º) 
Depth 
(km) 

Foreshock 32.77 130.830 0.547 17.8 10.0 210 78 167 0.62 6.32 
Mainshock 32.90 131.017 0.1 27.1 12.3 235 60 -161 3.5 7.0 

Table 3.2 Comparison of the observed and estimated deformations at the Kumamoto and Choyo GPS stations 
for the mainshock. 

GPS station 
Observation GSI model DPRI model 

Horizontal 
(m) 

Vertical 
(m) 

NS  
(m) 

EW 
(m) 

UD 
(m) 

NS  
(m) 

EW  
(m) 

UD  
(m) 

Kumamoto 0.75(1) -0.20 0.0 0.85 -0.30 0.39 0.19 -0.19 
Choyo 0.97(2) 0.23 -0.57 -0.50 0.25 -0.12 -0.02 0.04 

(1) Approximately ENE direction; (2) Approximately SW direction. 

 
Figure 3.5 (a) Finite-fault models by GSI (2016) for the foreshock and mainshock and (b) finite-fault model by 
Asano and Iwata (2016) for the mainshock. 
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Figure 3.6 Estimated elastic deformation profiles based on the GSI finite-fault model for the foreshock: (a) NS 
deformation, (b) EW deformation, and (c) UD deformation. 

     
Figure 3.7 Estimated elastic deformation profiles based on the GSI finite-fault model for the mainshock: (a) NS 
deformation, (b) EW deformation, and (c) UD deformation. 

     
Figure 3.8 Estimated elastic deformation profiles based on the DPRI finite-fault model for the foreshock: (a) NS 
deformation, (b) EW deformation, and (c) UD deformation. 

     
Figure 3.9 Estimated elastic deformation profiles based on the DPRI finite-fault model for the mainshock: (a) NS 
deformation, (b) EW deformation, and (c) UD deformation. 
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3.3 Strong ground motion characteristics 
In Japan, national strong motion networks, K-NET and KiK-net (http://www.kyoshin.bosai.go.jp/), were 
established in the aftermath of the 1995 Kobe earthquake, and currently more than 1700 stations are 
operational. For the 2016 Kumamoto earthquakes, an extensive set of ground motion data is 
available. In this section, characteristics of observed strong ground motions in the Kumamoto region 
are investigated. The following aspects are discussed in this section: (i) strong motion characteristics 
in the near-fault region, (ii) regional ground motion characteristics and directivity of the recorded 
ground motions with respect to the fault geometry/orientation, and (iii) comparison of observed ground 
motion recordings with an existing prediction equation. 

For these purposes, all available ground motion data for 20 seismic events that occurred in April 2016 
(MJ ≥ 4.3) are downloaded from the K-NET/KiK-net (in total, 6177 records, including borehole 
recording data for the KiK-net; each record has 3 components), and are processed uniformly to 
compute acceleration/velocity waveforms as well as various ground motion parameters (peak ground 
acceleration, PGA, and 5%-damped spectral acceleration, SA). For the record processing, a standard 
procedure (e.g. tapering, zero-padding, and band-pass filtering) suggested by Boore (2005) is 
implemented. 

3.3.1 Strong motion characteristics in the near-fault region 

In this section, recorded ground motion data at three stations, i.e. KMMH16 (Mashiki; 32.7967ºN, 
130.8199ºE), KMM006 (Kumamoto; 32.7934ºN, 130.7772ºE), and KMM008 (Uto; 32.6878ºN, 
130.6582ºE), are analysed in detail; the locations of these stations are shown in Figure 3.21. These 
near-fault locations are selected because the earthquake damage surveys were carried out during the 
EEFIT mission (Goda et al., 2016; see Section 4). The KMMH16 station is from the KiK-net and thus 
two sets of three component recordings at ground surface and in borehole are available. Another 
particularly important aspect of the selected records is that KMMH16 and KMM006 are in the hanging 
wall region of the mainshock (i.e. within a projected fault plane on the ground surface), and thus very 
intense ground shaking was observed during the mainshock. Moreover, at KMMH16, strong shaking 
due to the foreshock preceded the mainshock, resulting in double-shock ground motions. 

Figure 3.10 shows a borehole log and shear wave velocity profile at the KMMH16 station (in Mashiki 
Town). Relatively soft soil layers exist in the top 15 m (shear wave velocity less than 250 m/s), 
underlain by firm rock layers. The borehole recording is installed at a depth of 255 m (ground surface 
is at 55 m altitude). Therefore, major site amplification is anticipated between ground surface and 
borehole at this site because of high contrast of the shear wave velocities. The average shear wave 
velocity in the top 30 m of the soil is calculated as 280 m/s (i.e. NEHRP site class D). 

Figure 3.11 shows observed acceleration as well as velocity time-histories (3 components) at 
KMMH16 for the foreshock and mainshock. The blue curves are for the ground surface recordings, 
whereas the red curves are for the borehole recordings. The significant amplification of the ground 
motions can be visually inspected by comparing the blue and red curves. Another notable observation 
is that for the velocity time-histories for the mainshock (i.e. Figure 3.11d), relatively large long-period 
velocity waves are present at both ground surface and borehole (particularly for vertical motions). This 
indicates that site amplification for short-period components is significantly influenced by near-surface 
soil characteristics, while that for long-period components is more coherent at ground surface and 
borehole. The latter may also be attributed to the ground surface rupture near the Mashiki areas (see 
Section 2). 

To examine the spectral content of the observed ground motions at KMMH16, 5%-damped response 
spectra for the foreshock and mainshock are calculated and shown in Figure 3.12. The results for the 
ground surface motions are presented with solid lines, while those for the borehole motions are 
shown with broken lines. The comparison of the response spectra indicates: (i) amplitudes of the 
response spectra are large, exceeding 1 g up to a period of about 1 s for the foreshock and about 2 s 
for the mainshock; (ii) generally site amplification is significant for all three components; (iii) horizontal 
motions are amplified in a period range between 0 s (i.e. PGA) and about 2 to 3 s, while vertical 
motions are significantly amplified at vibration periods less than 0.5 s. 

To investigate the site amplification at KMMH16 in detail, the borehole-to-surface ratios of Fourier 
amplitude spectra are computed (Ghofrani et al., 2013), and are shown in Figure 3.13. The results 

http://www.kyoshin.bosai.go.jp/
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indicate that the site amplification is period-dependent; the horizontal ground motions are amplified 
significantly (by a factor of 5 or more) in the period range between 0.3 s and 2 s, while the vertical 
ground motions are mainly amplified in the periods less than 0.5 s. To further examine the site 
amplification observed at KMMH16, borehole-to-surface spectral ratios are evaluated for all 20 
earthquakes that are analysed as part of this investigation, and the results are shown in Figure 3.14. 
In the figure, the borehole-to-surface spectral ratio curves for NS, EW, and UD are shown in separate 
figures, and are categorised into four groups, i.e. foreshock, events occurred between the foreshock 
and the mainshock, mainshock, and events occurred after the mainshock. The division of the datasets 
is intended for studying the temporal changes of the site response related to soil nonlinearity during 
the Kumamoto foreshock-mainshock-aftershock sequence (e.g. Sawasaki et al., 2009; Wu et al., 
2009). The results shown in Figure 3.14 suggest that for the horizontal components, period shifts of 
the surface-to-borehole spectral ratios can be observed for the foreshock and mainshock in 
comparison with the majority of other smaller earthquakes (i.e. dominant peaks of the spectral ratios 
at 0.2 s to 0.4 s are significantly reduced). For the vertical component, very consistent site 
amplification is observed at periods less than 1 s, while the surface-to-borehole spectral ratios 
become more variable at longer periods. A more detailed investigation of the site amplification is 
warranted. 

 
Figure 3.10 Soil characteristics at KMMH16 (Mashiki): (a) borehole log and (b) shear wave velocity profile. 
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Figure 3.11 Observed ground motion records at KMMH16 (Mashiki): (a) acceleration time-histories for the 
foreshock, (b) velocity time-histories for the foreshock, (c) acceleration time-histories for the mainshock, and (d) 
velocity time-histories for the mainshock. 

 
Figure 3.12 5%-damped response spectra at KMMH16 (Mashiki): (a) foreshock records and (b) mainshock 
records. 
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Figure 3.13 Surface-to-borehole ratios of Fourier amplitude spectra at KMMH16 (Mashiki): (a) foreshock records 
and (b) mainshock records. 

 
Figure 3.14 Surface-to-borehole ratios of Fourier amplitude spectra at KMMH16 (Mashiki) for different 
earthquakes during the 2016 Kumamoto foreshock-mainshock-aftershock sequence: (a) NS components, (b) EW 
components, and (c) UD components. 

Figure 3.15 shows a borehole log, in-situ N blow counts (standard penetration tests), and shear wave 
velocity profile at the KMM006 station (in Kumamoto City). The soil data reach 20 m depth only (and 
no recordings are made at borehole). The top 20 m soil at KMM006 consists of relatively soft layers 
(all layers have shear wave velocities less than 270 m/s); in particular, up to 11 m depth, soil layers 
are soft (i.e. N values less than 5). The average shear wave velocity in the top 30 m of the soil is 
calculated as 246 m/s (i.e. NEHRP site class D). 

Figure 3.16 shows the ground motion records at KMM006 for the foreshock and mainshock, whereas 
Figure 3.17 shows 5%-damped response spectra for the observed ground motions. The results show 
that intense ground motions were observed at KMM006, especially during the mainshock. At periods 
less than 1 s, SA values exceed 1 g. In comparison with KMMH16 (Figure 3.11 and Figure 3.12), 
intensities of the ground motions at KMM006 are lower. This is consistent with the observed ground 
motion damage near the two stations (Goda et al., 2016). Therefore, the main slip concentration of 
the mainshock rupture (i.e. asperity) should be nearer to KMMH16 than KMM006 (although both 
stations are in the hanging wall region of the mainshock rupture; Figure 3.5). 
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Figure 3.15 Soil characteristics at KMM006 (Kumamoto): (a) borehole log and N blow count profile and (b) shear 
wave velocity profile. 

 
Figure 3.16 Observed ground motion records at KMM006 (Kumamoto): (a) acceleration time-histories for the 
foreshock, (b) velocity time-histories for the foreshock, (c) acceleration time-histories for the mainshock, and (d) 
velocity time-histories for the mainshock. 



 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  30 

 

 
Figure 3.17 5%-damped response spectra at KMM006 (Kumamoto): (a) foreshock records and (b) mainshock 
records. 

Figure 3.18 shows a borehole log, in-situ N blow counts, and shear wave velocity profile at the 
KMM008 station (in Uto City). All soil layers at KMM008 have shear wave velocities less than 250 
m/s, and there are several soft layers in the top 10 m. The average shear wave velocity in the top 30 
m of the soil is calculated as 206 m/s (i.e. NEHRP site class D). 

Figure 3.19 shows the ground motion records at KMM008 for the foreshock and mainshock, whereas 
Figure 3.20 shows 5%-damped response spectra for the observed ground motions. At this location, 
ground shaking during the foreshock was moderate, whereas ground shaking during the mainshock 
was intense, exceeding SA values of 1 g at vibration periods less than 1 s. It is noted that the location 
of KMM008 with respect to the Futagawa Fault and the rupture propagation during the mainshock (i.e. 
from WSW to ENE) corresponds to a backward directivity position. 

 
Figure 3.18 Soil characteristics at KMM008 (Uto): (a) borehole log and N blow count profile and (b) shear wave 
velocity profile. 
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Figure 3.19 Observed ground motion records at KMM008 (Uto): (a) acceleration time-histories for the foreshock, 
(b) velocity time-histories for the foreshock, (c) acceleration time-histories for the mainshock, and (d) velocity 
time-histories for the mainshock. 

 
Figure 3.20 5%-damped response spectra at KMM008 (Uto): (a) foreshock records and (b) mainshock records. 
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3.3.2 Regional ground motion characteristics 

The analyses of ground motion records are extended to other recording stations in the Kumamoto 
region. Figure 3.21 and Figure 3.22 show ground motion maps based on observed recordings at K-
NET and KiK-net stations for the foreshock and mainshock, respectively. Four ground motion 
parameters, i.e. PGA and SA at 0.3 s, 1 s, and 3 s, are considered. Values of the ground motion 
parameters at unobserved locations are linearly interpolated and thus the ground motion maps 
represent crude estimates of ground motions only. Figure 3.21 shows that during the foreshock 
intense ground motions were observed at KMMH16 (Figure 3.11) and KMM06 (Figure 3.16). On the 
other hand, Figure 3.22 shows that intense ground motions due to the mainshock were observed at 
wide areas along both Futagawa and Hinagu Faults. Large values of the ground motion parameters 
are particularly concentrated near KMMH16. Another notable feature of the results shown in Figure 
3.22 is the observation of intense ground shaking for SA at 3 s in the north-eastern part of the map 
(Figure 3.22d).  

It is interesting to investigate the orientation of ground motion parameters with respect to the fault 
strike (Watson-Lamprey and Boore, 2007). For this purpose, for each of the K-NET and KiK-net 
stations, two horizontal components are rotated to a particular azimuth and then ground motion 
parameters are calculated using the rotated acceleration time-history. A rotation of ground motion 
records is carried out over 360º with one degree increment. The results can be plotted on a polar 
coordinate to examine the major and minor response axes of the ground motion records (Hong and 
Goda, 2007), in comparison with the fault geometry. The results for the foreshock and mainshock are 
shown in Figure 3.23 and Figure 3.24, respectively. The scale of the polar plots of the response 
spectra is adjusted for each ground motion parameter, noting that the same scale is adopted for the 
foreshock and mainshock to facilitate the visual comparison. 

Figure 3.23 shows that the recorded ground motions for the foreshock are intense at KMMH16 and 
KMM006, which are located in the forward directivity position (i.e. fault rupture propagates towards 
the location of interest). At KMMH16, rotated response spectra have circular shapes, with slightly 
greater responses in the fault normal direction. On the other hand, at KMM006, rotated response 
spectra are more polarised along the fault parallel direction. 

Figure 3.24 shows that for PGA and SAs at 0.3 s and 1 s, there is a clear dominant orientation of the 
ground motion parameters at KMMH16, KMM006, and KMM005 (Oozu; northeast of KMMH16), which 
is in parallel with the fault strike. Note that these stations are in the hanging wall region. Particularly 
for the short period range, the trend of the major response orientation is consistent in the near-fault 
region. At longer vibration periods, the orientations of the major response axes at KMMH16 and 
KMM005 rotate to almost fault-normal direction, while that at KMM006 remains parallel with the fault 
strike. It is important to note that the major response directions at short vibration periods for KMMH16 
coincide with the directions of many collapsed houses in Mashiki Town (Goda et al., 2016). This 
indicates that in the near-fault region, effective counter-measures (e.g. bracing) can be implemented 
to mitigate shaking damage when the dominant direction of the ground shaking is known. 
Furthermore, outside the near-fault region, some consistent orientation effects can be observed. At 
KMMH03 (Kikuchi), the fault-normal component is dominant. On the other hand, at KMM004 
(Ichinomiya), the fault-parallel component is dominant, particularly for SA at 3 s. In the EW component 
of the velocity time-history at KMM004, a large-amplitude velocity pulse is present. 
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Figure 3.21 Ground motion maps based on observed recordings for the foreshock: (a) PGA, (b) SA at 0.3 s, (c) 
SA at 1 s, and (d) SA at 3 s. 

 
Figure 3.22 Ground motion maps based on observed recordings for the mainshock: (a) PGA, (b) SA at 0.3 s, (c) 
SA at 1 s, and (d) SA at 3 s. 
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Figure 3.23 Rotated response spectra for the foreshock: (a) PGA, (b) SA at 0.3 s, (c) SA at 1 s, and (d) SA at 3 
s. 

 
Figure 3.24 Rotated response spectra for the mainshock: (a) PGA, (b) SA at 0.3 s, (c) SA at 1 s, and (d) SA at 3 
s. 
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3.3.3 Comparison of observed recordings and ground motion prediction equations 

It is important to compare the observed ground motions for the foreshock and mainshock with 
empirical prediction models in the literature. Through such a comparison, one can evaluate whether 
the ground motions from the Kumamoto earthquakes are unusual with respect to past events (note: 
such differences may arise due to various reasons, such as low/high stress drop and regional 
attenuation characteristics). In this study, a ground motion prediction equation (GMPE) by Boore et al. 
(2014) is adopted. The Boore et al. model is developed using worldwide ground motion data for 
shallow crustal earthquakes (including ground motion data from Japanese earthquakes) and hence is 
well suited for such a comparison. The moment magnitudes for the foreshock and mainshock are set 
to 6.1 and 7.1, respectively, according to F-net 
(http://www.fnet.bosai.go.jp/freesia/top.php?LANG=en). The source-to-site distance for the Boore et 
al. model is based on the so-called Joyner-Boore distance; for the ground motion data from K-NET 
and KiK-net, this distance measure is evaluated using the GSI’s finite-fault plane geometry (Figure 
3.5a). The Boore et al. model includes several adjustment parameters to refine the prediction, such as 
faulting mechanism and regional factor. In the comparison conducted herein, the strike-slip faulting 
mechanism and the regional factor for Japanese earthquakes are taken into account. For the 
comparison shown below, ground motion data that are recorded at sites with Vs30 between 150 m/s 
and 500 m/s are considered (average Vs30 is about 330 m/s). In applying the Boore et al. model, Vs30 
is set to 300 m/s. For evaluating the confidence interval of the Boore et al. model, a sigma value is 
calculated for the intra-event case (as ground motion data from a single event are concerned). 

Figure 3.25 and Figure 3.26 compare observed ground motions with predicted foreshock and 
mainshock ground motions, respectively, based on the Boore et al. model. The results for PGA and 
SAs at 0.3 s, 1 s, and 3 s are shown. For the foreshock, predicted values for PGA and SA at 0.3 s are 
consistent with the observed data, while those for SAs at 1 s and 3 s slightly overestimate the 
observations, especially at longer distances. For the mainshock, observed ground motions are 
generally consistent with the predicted values based on the Boore et al. model. In the distance range 
between 10 km and 100 km, there are several observation data that exceed the median plus one 
sigma curve; these data are mainly located in the NE of the rupture zone (i.e. Aso City and Yufu City 
and Kokonoe Town in Oita Prefecture). In the recorded accelerograms, the existence of a locally 
triggered event due to the mainshock was clearly observed; this increased the ground motion intensity 
at relatively remote locations. Overall, the recorded ground motion data for the foreshock and 
mainshock of the Kumamoto sequence are in agreement with the Boore et al. prediction models. 

3.4 Conclusions on the ground motions 
Regional earthquake catalogue data and strong motion data were analysed. In particular, the 
mainshock-aftershock seismic activities as well as ground deformation profiles were evaluated based 
on available finite-fault models for the Kumamoto earthquakes (i.e. GSI models and DPRI models), 
and were compared with actual GPS measurements before and after the earthquakes. Detailed 
analyses of recorded ground motions in the near-fault zone (e.g. KMMH16) revealed striking features 
of the intense ground shaking, directivity of strong motion, and site amplification. The analysed data 
were compared with an existing ground motion model for shallow crustal earthquakes.  

The main results from the earthquake data analyses for the Kumamoto events are as follows:  

1. Seismic activities of the 2016 Kumamoto sequence were distributed over a wide region, 
triggering numerous aftershocks. The migration of the earthquakes, originally from the Hinagu 
Fault zone (i.e. foreshock) to the Futagawa Fault zone (i.e. mainshock), was a notable feature 
of the sequence. 

2. The recorded ground motions in the hanging wall region (e.g. KMMH16 in Mashiki Town) 
showed intense spectral acceleration amplitudes in the short-to-moderate vibration period 
range (exceeding 1 g) with significant site amplifications due to soft sediment in the Kumamoto 
plain. A clear directivity of ground motions in parallel with the fault strike was observed in the 
near-fault zone, which correlated well with the directions of collapsed buildings in Mashiki 
Town.  

3. The observed ground motion data were in agreement with an empirical ground motion model 
by Boore et al. (2014).  

http://www.fnet.bosai.go.jp/freesia/top.php?LANG=en
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Figure 3.25 Comparison of the observed ground motions with the prediction equations by Boore et al. (2014) for 
the foreshock: (a) PGA, (b) SA at 0.3 s, (c) SA at 1 s, and (d) SA at 3 s. 

 
Figure 3.26 Comparison of the observed ground motions with the prediction equations by Boore et al. (2014) for 
the mainshock: (a) PGA, (b) SA at 0.3 s, (c) SA at 1 s, and (d) SA at 3 s. 
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4 Building Damage 

Kumamoto City is the capital city of Kumamoto Prefecture and has a population of approximately 
730,000 and together with adjacent urban areas forms Japan’s 11th biggest conurbation. Important 
industries are automotive components and electronics. The city is notable for an extensive castle 
complex which dates back to the 15th century and is its main tourist attraction. The surrounding 
Kumamoto Prefecture has a population of 1.8 million. Wide plains surrounding Kumamoto City mean 
that there is space for agriculture. The scenic hills and mountains to the east, including Aso Caldera, 
make the area popular with tourists.  

The EEFIT made observations of damage to structures in a range of areas, which are indicated in 
Figure 4.1. Intense damage occurred to residential suburbs on the south-western side of Kumamoto 
Prefecture, such as in Mashiki Town, and to villages in close proximity to the Futagawa Fault and to 
the Aso Caldera wall, such as Nishihara Village and Minami Aso Village. These were the areas where 
the majority of human casualties occurred (Section 6). The building stock in these areas is 
predominantly low-rise residential timber buildings. These areas also suffered damage to bridges, 
including the collapse of Aso Bridge caused by a large landslide and the damage to the Tawarayama 
Tunnel (Section 5). Areas further from the Futagawa and Hinagu Faults, such as Uto City and 
Kumamoto City, suffered more localised damage to specific vulnerable buildings. As well as damage 
to residential dwellings, there were also a number of dramatic failures to large reinforced concrete 
(RC) buildings at various locations. Extensive damage also occurred at the heritage sites of 
Kumamoto Castle in Kumamoto city centre and Aso Shrine to the north of Mount Aso. Damage 
observations are described in more detail in the following sections. Japan uses a red/yellow/green 
tagging system for classifying buildings as unsafe (red), requiring further assessment (yellow), and 
cleared for re-occupancy (green). These tagging colours are referred to in the following. 

 
Figure 4.1 Location map of EEFIT structural damage surveys (image source: Google Map). 

4.1 Building regulations in Japan 
Japan has a long history of earthquake engineering research and design. The 2016 Kumamoto 
mission is the fourth EEFIT mission to Japan. The background to Japanese building regulations has 
been gathered by the previous survey teams (EEFIT, 1997, 2011, 2013). This information has been 
repeated below (Table 4.1), supplemented with further information where relevant, with credit due to 
the previous survey teams. A more comprehensive review of the 1981 building code is provided in the 
EEFIT report which followed the Hyogo-Ken Nanbu (Kobe) earthquake (EEFIT, 1997). Nakashima 
and Chusilp (2003) provide commentary on code revisions that were carried out after the 1995 Kobe 
earthquake in response to lessons learned. 
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Table 4.1 Summary of the Japanese building regulations for seismic design. 

Year  Summary of regulations  
1895 The first building requirements (non-compulsory) introduced following the 1891 Nobi earthquake.  
1919-
1920 

City Planning Act and Urban Building Standards Act introduced in response to urban expansion. 
Specific regulations dictating and regulating building in six major urban centres in Japan included: a 
height limit of 100 feet; structural design for timber, masonry, brick, RC, and steel constructions; 
Allowable stress design; quality of materials; dead and live loads. No seismic requirement included. 

1923 Great Kanto earthquake 
1924 Urban Design Law of Japan introduced base shear force equivalent to 0.1 g as a requirement for six 

major urban centres in Japan.  
1950 Ultimate strength design introduced in the Building Standard Law. The design base shear was 

increased to 0.2 g and made compulsory nationwide.  
1968 Tokachi-oki earthquake 
1971 Amendment introduced after the 1968 Tokachi-oki earthquake to improve ductility of RC columns by 

reducing the required tie hoop space. 
1978 Miyagi-oki earthquake 
1981 Incorporating experience from the 1978 Miyagi-oki earthquake, a two-level approach (serviceability 

limit state and ultimate limit state) was introduced and building permission procedures were simplified 
for seismic isolation and active/passive vibration control (Okazaki, 2008). All buildings >31 m high must 
be analysed for storey drift, stiffness, lateral and torsional eccentricity, while those >60 m must be 
designed using dynamic analysis. Allowable storey drift was limited to 0.5% of the storey height, 
although this could be increased to 0.8% if guarantees of no severe damage to non-structural elements 
could be provided. Although seen as the most advanced code in the world at the time, criticisms 
included: incentive to omit shear walls/bracing to satisfy shape factor requirements; incentive to use 
unnecessarily large columns; structural coefficient for ultimate limit state was required for each storey 
rather than the whole structure; crude seismic zonation of the country; lack of provisions for sub-
structure and non-structural damage; and importance factor not applied (Ishiyama, 1989). For a more 
detailed review of the 1981 building code, see EEFIT (1997).  

1995 Kobe earthquake 
1995 Act for Promoting Seismic Retrofitting of Existing Buildings stated that building owners of special 

buildings (which include most buildings except for private houses) should strive to carry out seismic 
assessment and strengthening. There was no mandatory requirement to strengthen, or to achieve a 
minimum strengthening level. 

2000  Amendment of the Building Standard Law to include performance-based regulation. The revised code 
precisely defined seismic performance requirements and verification based on earthquake response 
spectra at engineering bedrock and additional surface-soil-layer amplification factors. This approach 
retained the use of life safety and damage limitation limit states introduced previously, with design 
ground motion damage limitation limit state reduced to 1/5 of that for life safety, which was based on 
an earthquake with a return period of 500 years (Kuramoto, 2006). 

2001 Publishing of the advisory standards Standard for Seismic Evaluation and Guidelines for Seismic 
Retrofit of Existing Reinforced Concrete Buildings (JBDPA, 2001). These standards are not mandatory, 
but contain guidance about techniques for voluntary assessment and strengthening. 

2011 Tohoku earthquake 
2013 An amendment to the 1995 Act for Promoting Seismic Retrofitting of Existing Buildings has placed an 

obligation on owners to carry out seismic assessment and report on building strength, but it is not 
mandatory to strengthen. 

4.2 Damage to timber buildings in Mashiki Town 
Mashiki Town is in close proximity to the activated faults of the 2016 Kumamoto earthquakes (Section 
2), and suffered severe damage and casualties. Measurements at the KMMH16 station in Mashiki 
Town showed response accelerations (Figure 4.2). Spectral accelerations were particularly high 
around 1 s in the EW direction. Vertical accelerations were also high. As a residential suburb, the 
building stock in Mashiki is dominated by single-family dwelling timber buildings of one and two 
storeys. There are also a number of low-to-medium-rise RC apartment buildings. Along the 
commercial (retail) streets (Road 28 and Road 235), buildings were generally one- to three-storey 
steel frames. Figure 4.3 provides an aerial view of Mashiki Town prior to the earthquakes. It can be 
seen that the timber frame houses are generally detached with clearance between houses, but are 
often constructed tight to the narrow streets. Figure 4.4 shows the same view after the earthquakes. 
An impression of the proportion of houses that have suffered roof damage can be seen from the blue 
weatherproofing sheeting; however, there are also many cases of severely damaged buildings that 
had not been sheeted, as the loss had been total. 
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Figure 4.2 Measured 5%-damped spectral accelerations in Mashiki Town. 

 
Figure 4.3 Aerial view of Mashiki Town prior to the 2016 Kumamoto earthquakes (image source: Google Earth). 

 
Figure 4.4 Aerial view of Mashiki Town after the 2016 Kumamoto earthquakes (image source: Google Earth). 
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Failures of timber buildings occurred in a number of modes. The most catastrophic failures had 
resulted in complete collapse, and disintegration of timber walls and roofs (Figure 4.5a). These types 
of failures were typical of older buildings constructed in traditional styles that were built before the 
1981 building code. There were also many cases of failure of more modern buildings, including many 
cases of collapsed bottom storeys in two-storey houses (Figure 4.5b). In many cases buildings had 
suffered significant drift of bottom storeys, but had not collapsed. In these cases, often cladding had 
fallen and the structure of vertical timber studs and horizontal timber boarding lying behind could be 
seen (Figure 4.5c). These walls were not strengthened by sheathing boards, and it appeared that the 
lateral design instead used diagonal timber struts as observed in Minami Aso Village (see Figure 
4.7a). At the levels of drifts illustrated in Figure 4.5c, it is likely that diagonal timber braces would be 
ineffective; however, many similar cases where buildings had suffered extreme loss of form without 
collapse were also observed. It is possible that the horizontal wooden laths were providing some 
resistance by offering an alternative vertical load path and restraining the buckling of vertical studs. To 
gain an understanding of the distribution and intensity of damage in Mashiki Town, the EEFIT carried 
out a systematic damage survey, which is described in Section 4.9. 

      

      
Figure 4.5 Damage to timber frame houses in Mashiki Town: (a) complete collapse of a pre-1981 structure, (b) 
bottom storey collapse, (c) significant drift, and (d) soft-storey collapse mechanism of a modern building. 
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(c) (d) 
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4.3 Ground-induced building damage in Minami Aso Village 
The EEFIT visited the student village next to Tokai University (Aso campus) in the Kawayo district of 
Minami Aso Village (Figure 4.6). Buildings in this area were a mixture of one- and two-storey timber 
residential buildings, and also a number of two- to five-storey RC residential buildings. The RC 
buildings were generally located in the lower parts of the area close to the Shirakawa River gorge. 
Significant damage had occurred to the majority of timber frame buildings (Goda et al., 2016). 
Damage to structures had occurred due to ground movement as well as shaking damage. The yellow 
lines in Figure 4.6 indicate locations of significant ground ruptures. 

In area A, a series of parallel ruptures suggest movement of ground towards the northwest. All timber 
frame houses in this area had suffered significant damage, loss of cladding and permanent drifts. An 
example is shown in Figure 4.7a. 

In area B a significant single rupture had occurred, having dramatic impact on the buildings crossed 
by the rupture.  

• Building 1 (Figure 4.7b) was leaning at an angle of approximately 15º. The building appeared 
to have suffered foundation failure to the south elevation and failure of the stud wall base 
connections to the north elevation, resulting in uplift of the north elevation and significant tilt. 
The P- overturning moments induced by this degree of tilt put the building at high risk of 
collapse. The fact that it had retained its shape and not collapsed suggested that it must have 
robust floor and roof ties and effective cross-walls.  

• Building 2 (Figure 4.7c) suffered complete collapse of the lower storey. Due to the extent of 
damage, it was not possible to determine whether this had been caused predominantly by 
ground deformation or by shaking forces.  

• Building 3 (Figure 4.7d) was a two-storey timber frame student residence apartment, with steel 
framed walkways to the perimeter. The building had been subjected to significant shearing and 
extension from a ground rupture crossing the building in the transverse direction. This caused 
longitudinal stretching of the bottom of the building, while the upper storey remained 
unstretched, resulting in large tilting of columns, but no local collapse. It is likely that the 
presence of the steel walkways had been beneficial in providing some additional lateral 
resistance. 

 
Figure 4.6 Aerial view of a student complex in the Kawayo district of Minami Aso Village (image source: Google 
Map). 
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Figure 4.7 Damage to timber frame buildings in the Kawayo district of Minami Aso Village: (a) heavily damaged 
house in Area A, (b) Building 1 in Area B, (c) Building 2 in Area B, and (d) Building 3 in Area B with visible traces 
of the ground rupture that crossed underneath. 
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4.4 Damage to reinforced concrete buildings 
A damage survey was carried out by the University of Tokyo team a few days after the earthquakes 
(Tajiri et al., 2016). The survey report documented a number of examples of RC building failures, 
including 8 cases of collapse due to soft-storey failure (Figure 4.8a). RC frame failure examples were 
also collated by EERI desk studies by Tasdemir and Paul (2016), which included numerous images 
from the University of Tokyo damage survey and news media. Although the EEFIT did not observe 
the cases of soft-storey collapse, cases of moderate and heavy damage to RC buildings in the form of 
shear cracking to RC shear walls and joint damage to poorly detailed RC frames were observed (e.g. 
Figures 4.9 and 4.10). 

The Uto City Office suffered from a mid-storey partial collapse mechanism (Figure 4.8b). The building 
was constructed prior to the 1981 building law. The partial collapse had occurred to the fourth storey 
as a result of extreme damage to a central edge column. An outer façade of more closely-spaced 
non-structural mullions had suffered extensive deformation. The damage to RC columns and beams 
could be seen clearly because the structure was exposed and the cracks to the columns and beams 
were wide (Figure 4.8c). The damage appeared to be due to poor detailing of RC elements, which 
may have been exacerbated by an irregular building form. Although the column grid appears regular 
(Figure 4.8d), two cores to the back of the building could possibly be causing differential stiffness of 
the framing lines. Only minor damage had generally occurred to other buildings nearby the Uto City 
Office, making this damage striking in comparison. 

      

      
Figure 4.8 Damage to RC frame buildings: (a) soft-storey collapse of an apartment building in Kumamoto City 
(Tajiri et al., 2016), (b) west façade of the Uto City Office, (c) column damage to the Uto City Office, and (d) 
structural layout of the Uto City Office – the blue lines are the front face of the building where structural damage 
to the RC frame is visible as shown in (b) and (c) (aerial view from Google Earth). 

(c) (d) 

(b) (a) 
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Mashiki Town Office is a strengthened RC building in the centre of Mashiki Town, comprising a three-
storey southern block and two-storey northern block connected by a link bridge. RC frame 
strengthening had been applied to the southern elevation of the building (Figure 4.9a). This part of 
the building appeared undamaged, except for some hairline cracking to the concrete shear link beams 
connecting the retrofitted frame to the original frame. The strengthening solution uses an RC frame 
offset from the original façade to limit disruption to the existing building, albeit with some aesthetic and 
daylight disadvantages. The solution looks similar to techniques described in JBDPA (2001) and 
Takeda et al. (2013). The retrofit frame had a stepped shape, presumably to spread the intensity of 
column axial loads to the end bays and to improve efficiency of foundations. Although the retrofit 
appeared to be successful, localised damage had occurred to the link bridge structure joining the two 
blocks (Figure 4.9b). The link bridge had clearly been detailed with a movement joint to the northern 
end to permit horizontal differential movement between the two buildings. Independent vertical 
support was provided to the link bridge at its northern end. Damage appeared to have occurred due to 
the hard vertical support, which had transferred high shears into the link bridge as the southern block 
swayed. 

Figure 4.10 shows an example of a typical RC frame apartment building in Mashiki Town. These 
buildings were RC moment-resisting frames with large columns and regular column grids. All 
examples of these types of buildings observed during the Mashiki damage survey had suffered only 
minor or negligible damage, despite being surrounded by other heavily damaged structures. 

      
Figure 4.9 Mashiki Town Office (strengthened RC frame): (a) strengthened south elevation and (b) damage to 
link bridge. 

      
Figure 4.10 Well-performing RC frame apartment building in Mashiki Town: (a) general view and (b) zoom 
showing no evidence of fine cracks. 

(b) (a) 

(a) (b) 
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4.5 Damage to steel frame buildings and hybrid construction 
A number of steel building failures were observed along Road 28 in Mashiki Town. These were 
generally commercial properties with glazed ground level street side elevations. Figure 4.11a shows 
a typical failure observed to low-rise steel frame commercial buildings in Mashiki. The bottom storey 
suffered significant drift to the southwest. The drift caused infill blockwork to collapse exposing the 
interior of the building. The steel frame did not appear to have bracing. Similar failures were observed 
to other shops along the same high street which appeared to have suffered from a lack of bracing in 
the street side façade causing a weakness in an orientation parallel to the fault (see Section 3). 
Commercial buildings located along nearby perpendicular streets appeared to have fared better. 
Shops on Road 235 running north/south adjacent to the Mashiki Town Office were still trading, and 
did not exhibit visible damage. Figure 4.11b shows the partial collapse of a four-storey retail and 
residential building to the northern side of Road 28. The building appeared to be of hybrid steel and 
timber construction, and possibly had suffered from lack of continuity between the different structural 
sections. The collapse had occurred in the EW direction parallel to Road 28. This building was 
overhanging the pavement and looked likely to represent a hazard in case of aftershocks. Due to the 
density of buildings and narrowness of the road in this area, it was not possible for the building to be 
cordoned, and therefore the hazard to pedestrians and other road users was uncontrolled.  

      
Figure 4.11 Steel building failures in Mashiki Town: (a) bottom-storey drift to the southern side of Road 28 and 
(b) four-storey collapse to the northern side of Road 28. 

4.6 Damage to schools and hospitals 
Nine days after the mainshock, the Asahi Shimbun newspaper (2016a) reported that approximately 
two thirds of school sites in Kumamoto City were closed due to building damage or because 
investigations were ongoing. Out of 1267 school buildings, 134 buildings were classified as red (11%), 
354 as yellow (28%), and 779 as green (61%).  

The EEFIT visited Mashiki Junior High School; the team was not able to inspect the building closely. 
Tajiri et al. (2016) carried out a damage survey at nearby Kiyama Junior High School immediately 
after the mainshock and observed damage to RC columns supporting the link bridge between two 
structures. The photographs of that survey are shown in Figure 4.12. The school building had a steel 
bracing retrofit to classrooms which was undamaged (Figure 4.12a), but lighter bracing to the 
gymnasium which had buckled (Figure 4.12b). Hazardous damage had occurred to the link bridges 
which were still standing, but exhibiting significant column drifts (Figures 4.12c and 4.12d). This 
pattern of damage was similar to the Mashiki Town Office, showing low damage to strengthened 
blocks but concentrated damage to linking structures.  

(a) (b) 
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Figure 4.12 Mashiki Junior High School: (a) RC frame retrofitted with steel bracing (undamaged), (b) buckled 
bracing to the gymnasium structure, (c) significant drift of link corridor, and (d) detailed picture of the same link 
corridor (Tajiri et al., 2016). 

Figure 4.13 shows a municipality-run nursery (previously an elementary school) in the Kawayo district 
of Minami Aso Village which comprised three RC frame blocks. The building frames were very regular 
and the RC structure was generally exposed. At the time of the visit, the buildings were in use as a 
disaster management centre instead of nursery. One of the buildings had been yellow-tagged but was 
still in use for storage of emergency supplies. The school playgrounds had been used for gathering 
debris from damaged buildings. The only visible external damage to the building was to a movement 
joint between two of the blocks (Figure 4.13b). Apart from this the exposed RC frames did not show 
earthquake damage, but appeared to be in a somewhat dilapidated state. 

      
Figure 4.13 Minami Aso Village Nursery: (a) regular RC frame construction and (b) damage to a movement joint 
between blocks (yellow-tagged). 

(c) (d) 

(a) (b) 

(a) (b) 
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The EEFIT also visited the Kumamoto City Hospital. News reports (Asahi Shimbun, 2016b) had 
stated that this hospital was forced to evacuate patients following the earthquakes due to damage to 
ceilings and walls (mainly non-structural components). At the time of the visit, the hospital staff were 
working in the building, but the building did not appear to be in full use. The team was not permitted to 
survey inside the building. From the outside, damage could be seen to the façades. The building 
appeared to be a RC frame with age of 20 to 40 years. There was no visible earthquake damage to 
the exposed RC structure, but the building appeared generally in a dilapidated state. The partial 
occupation of the building suggested that it was not in a hazardous state, but had lost its functionality.  

4.7 Damage to buildings in the city centre of Kumamoto 
The city centre of Kumamoto (Figure 4.14) experienced lower intensity of shaking than Mashiki Town, 
however accelerations were still considerable (Figure 4.15; note: the location of the KMM006 station 
is in the Higashi (Eastern) Ward, see Figure 4.1 close to the Futagawa Fault). The shaking intensity 
in the city centre was registered as 6+ on the Japan Meteorological Agency’s (JMA) intensity scale, 
which is roughly equivalent to IX to X on the Modified Mercalli Intensity Scale. 

Typical building stock in the city centre is medium- to high-rise. The city does not have super tall 
buildings; very few buildings exceed 60 m high, which is a threshold in the Japanese building code 
above which analyses and approval requirements become more onerous.  

Not many red-tagged buildings were seen during the damage survey in the city centre. The team 
observed some damage to cladding and spandrel walls (Figures 4.16a and 4.16c), some minor 
damage at ground level (Figure 4.16b), and to contents and systems. For instance, a tall hotel car 
elevator did not have visible damage to structure or cladding, but the internal workings of the elevator 
and cars were heavily damaged (Figure 4.16d). 

 
Figure 4.14 Aerial view of Kumamoto downtown and Kumamoto Castle (image source: Google Earth). 
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Figure 4.15 Measured 5%-damped spectral accelerations in Kumamoto City (KMM006). 

      

      
Figure 4.16 Building damage in Kumamoto city centre: (a) damaged cladding being repaired, (b) buildings next 
to castle moat (ground damage), (c) shear cracking to façade, and (d) damage to contents and systems of a car 
elevator tower. 

(c) 
(d) 

(a) 
(b) 
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4.8 Damage to traditional buildings 

4.8.1 Kumamoto Castle 

Kumamoto Castle is a large complex of defensive earthworks and timber buildings (Figure 4.17a), 
originally dating from 1467 CE. The castle suffered damage to the steep, stone-faced earthworks, 
which collapsed at a number of locations. The main castle keep is a concrete reconstruction which 
was built in 1960 (Figure 4.17b). Minor damage could be seen to the timber ornamentation of the 
keep, but there was no visible lean or collapse. In some cases, the damage to the earthworks led to 
the collapse of timber structures on top of them. The team was able to observe the perimeter of the 
complex, including the north-eastern corner where a significant ground collapse had occurred, and 
the corner timber structure had collapsed to the bottom of the embankment and destroyed a shrine 
underneath (Figure 4.17c). The embankments are steep angled and faced in stone. In areas where 
collapse had occurred, it could be seen that the stone was generally unmortared. Material within the 
embankment generally looked granular with low cohesion (Figure 4.17d). 

      

      

Figure 4.17 Damage to Kumamoto Castle: (a) aerial view from northeast (image source: Google Earth), (b) main 
building, (c) north-western corner collapse, and (d) south embankment collapse. 

4.8.2 Aso Shrine 

Aso Shrine is located to the north of Mount Aso. The shrine is a complex of timber buildings. The 
central structures of the temple complex had all suffered storey collapse. The timber roofs were 
generally still intact, but the roofs were now at ground level because of partial or complete collapse of 
supporting walls and posts. The roofs were of thick construction, making them very heavy despite the 
relatively light density of supporting timber material. It was notable that despite significant collapse the 
roof structures had held their form (Figure 4.18a). Photographs of the shrine buildings before the 
collapse showed open-sided buildings supported with posts and with very few cross walls to provide 
lateral stability (Figure 4.18b). 

(c) (d) 

(a) (b) 
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Figure 4.18 Damage to Aso Shrine: (a) collapsed entrance structure and (b) photograph of the same structure 
prior to the earthquakes. 

4.8.3 Concrete temples 

In Mashiki Town, two examples of concrete temple structures were seen. These had both suffered 
heavy damage. The form of the concrete temples mimicked the timber pagoda, having circular RC 
corner columns, connected to RC beams. The heavy concrete roof structures, poor detailing, and 
insufficient strength of column heads appeared to have contributed to the partial collapse. The 
structures did not have clear ductile stability systems. Figure 4.19 shows a temple close to the 
Mashiki Post Office. This building did not collapse during the foreshock but only suffered noticeable 
damage; it then had collapsed during the mainshock. 

      
Figure 4.19 Damage to a concrete temple in Mashiki Town: (a) a view from the eastern side and (b) failure of a 
column head at the north-western corner. 

(a) (b) 
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4.9 Systematic damage survey in Mashiki Town 
The EEFIT carried out a systematic damage survey of 277 properties near the Mashiki Town Office 
(note: a JMA recording station was installed at the Town Office, which recorded the highest ground 
motions equivalent to JMA intensity of 7 during the foreshock and mainshock). The surveyed 
properties included timber, RC, and steel buildings. The surveyed areas were also close to the 
KMMH16 station (Figure 4.2). The purposes of the survey were to find spatial patterns in the damage 
and to gather data on the proportions of damage to different types of buildings.  

The surveying was carried out by teams of two people as a walking survey based on external visual 
inspections of buildings. All properties on both sides of each surveyed street were logged. Information 
was logged in a simple data form (Table 4.2). One or two photographs of each building were taken, 
and the camera log numbers were used as the building references. GPS cameras were used, 
however the use of an independent GPS tracker in parallel was found to provide more accurate 
locating. These references were also marked onto a large scale map printed from Google Map, which 
included building outlines. Building damage severity was logged on a scale from 0 to 5, with 5 
representing collapse. The earthquake damage grades are similar to the EMS-98 guidelines 
(Grünthal, 1998). Figure 4.20 shows examples of building damage classifications from the survey. 
Prior to surveying, the teams carried out a sample of surveys all together as a large group in order to 
correlate interpretation of the different damage levels.  

Table 4.2 Damage survey data collection form. 

Camera 
ref 

Building 
use 

Structure/materi
al type 

No. of 
storeys 

Damage 
grade Comments 

797 Shop RC 2 0 Post Office; Minor ground movement 
798 Shop Steel 1 0 Supermarket 
803 House Timber 2 2 - 
800 Hospital Concrete 2 1 - 

⁞ ⁞ ⁞ ⁞ ⁞ ⁞ 

      

      
Figure 4.20 Examples of surveyed timber buildings in Mashiki Town: (a) damage grade 1 or 2, (b) damage grade 
3, (c) damage grade 4, and (d) damage grade 5. 

(a) (b) 

(c) (d) 
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The results of the building damage survey in Mashiki Town are shown in Figure 4.21. Generally, 
newer timber houses as well as RC and steel buildings performed better than older timber houses. 
Houses in the south of the Mashiki Town Office were more severely damaged than those in the north, 
noting that the southern part of the surveyed areas was an older settlement. The geographic trend 
can be seen more clearly in Figure 4.22, which shows the same information filtered to timber 
buildings only, which was the dominant structural type. For the steel buildings (square markers in 
Figure 4.21), a trend of higher damage on Road 28 than Road 235 can be observed. The differences 
of the damage extent in the northern and southern areas may also be attributed to geological 
conditions of the two areas (approximately, Road 28 is a boundary between the volcanic sediments 
and the river terrace deposits; Seamless Digital Geological Map of Japan, 2016). Another important 
factor appeared to be the proximity to the Akitsu River, where severe geotechnical damage to bridges 
and embankments had occurred (Section 5). Therefore, at the local scale, micro-zonation of soil types 
and geomorphological features may have been useful for evaluating seismic risk potential in this 
region a priori.  

Figure 4.23 shows damage according to the structural/material type. It can be seen that RC buildings 
performed better than steel and timber buildings. Timber buildings were well distributed across the 
damage classifications, while steel frame buildings were more concentrated towards the two ends of 
the damage grade. It should be noted that all of the steel buildings were low-rise with a maximum of 
four storeys. Figure 4.24 shows damage according to the number of storeys for steel and timber 
buildings. For the steel buildings, a significant trend can be seen of higher vulnerability of multi-storey 
buildings. For the timber buildings, however, the number of storeys did not appear to be a major 
differentiating factor in vulnerability. 

It is important to clarify the limitations of the damage surveys conducted by the EEFIT. A systematic 
process is required to ensure that random samples of damaged and undamaged buildings are 
surveyed. There is a risk that damage surveyors can be drawn towards logging more damaged 
buildings. This bias can be resisted by using a systematic sampling process. For the Mashiki damage 
survey, a random sample was enforced by requiring that every building on a specific street was 
logged. The process could have been improved in a number of ways: 

• While the logging of every property was enforced, the surveyors were free to choose which 
streets to survey within the survey area. This could be improved by preselecting the route to 
ensure that surveyors are not attracted towards the more damaged streets. 

• Logging of every property is resource intensive, meaning that the area that can be covered is 
limited. A wider geographic spread could be obtained by surveying, for instance, every fifth 
property instead of every property. 

• The rule of inspecting every building or every fifth building can be difficult to interpret in cases 
where there are double layers of buildings behind the street-side properties. Establishing a 
clear policy about non-street-side properties before the survey would help ensure a consistent 
approach. 

• Another method of a random sampling would be to preselect the sample set from maps using a 
random method before the survey. This could have been done for the Mashiki area, which was 
found to be well represented in Google Map in terms of building outlines. The OpenStreetMap 
was also well represented due to a Missing Maps project prompted by the Kumamoto 
earthquakes (http://tasks.hotosm.org/project/1791). It is likely that future major earthquakes will 
also be supported by the Missing Maps project, which may be of benefit to future EEFIT 
missions, particularly in areas where commercial mapping websites contain limited data.  

Some other limitations of the Mashiki damage survey were: 

• Some buildings could not be recorded clearly, either because they were covered by 
weatherproofing or because buildings had been removed. However, there were relatively few 
empty plots in Mashiki Town; the impression was that very few buildings had been removed at 
the time of the survey. 

• Differentiating between the different damage grades can be challenging, particularly at the low 
end of the damage scale (e.g. grade 1 or 2). This issue was partly mitigated by ensuring a clear 
photo log of all the buildings surveyed to enable retrospective review and moderation. 

http://tasks.hotosm.org/project/1791
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Figure 4.21 Damage survey results in Mashiki Town. The base map was obtained from OpenStreetMap. 

 

Figure 4.22 Damage survey results for timber buildings only in Mashiki Town. The base map was obtained from 
OpenStreetMap. 
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Figure 4.23 Proportion of damaged buildings according to the structural material and their damage grade in the 
EEFIT survey in Mashiki Town. 

 

Figure 4.24 Proportion of damaged steel and timber buildings according to the number of storeys and damage 
grade. 

4.10 Conclusions on the building damage 
The 2016 Kumamoto earthquakes highlighted certain vulnerabilities in Japanese building stock that 
had already been reported upon following the 1995 Kobe earthquake. These include poorly detailed 
pre-1981 RC frame buildings, soft-storey vulnerabilities, and poor performance of old timber houses. 
These issues have been resolved in new building codes, but are still critical to some older buildings. 
The seismic zone classification for Kumamoto was lower compared with other parts of Japan where 
historical seismicity has been more active. On the other hand, ground motions experienced in near-
fault regions were quite intense and have exceeded the seismic design ground motion level in the 
region. 

Since the Kobe earthquake there have been efforts to encourage retrofit or replacement of vulnerable 
structures, and the EEFIT observed evidence of strengthening programmes having been completed 
to school buildings and government buildings. Strengthening of privately owned existing structures is 
not currently mandatory, but recent changes to the law may indicate a shift towards future mandatory 
regulations. There were also some newer timber houses which performed poorly, which may be due 
to a combination of extreme loading beyond the code expectations and poor construction. There were 
a number of examples of hospitals losing operational capacity due to failures of non-structural 
components and systems. This is also likely to be an area of future attention and improvement. 

235 5 15 22 

7 7 1 86 149 
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5 Infrastructure Damage and Geotechnical Failures 

There was extensive damage to infrastructure throughout Kumamoto Prefecture as a result of ground 
shaking, fault rupture, ground settlement, liquefaction, and slope failure. Most damage was seen 
close to the Futagawa Fault where ground shaking was strongest and where there was also fault 
rupture at the surface (Sections 2 and 3). Damage to roads was most prevalent in areas of higher 
relief where lateral spread and slope failure occurred above and below the roads. Damage to bridges 
was also predominantly in areas of high relief, which coincides with being in close proximity to the 
Futagawa Fault. The EEFIT visited a number of locations to inspect damage to bridges and other 
infrastructure (Figure 5.1). Damage to over-ground utilities was seen in most areas where there was 
also damage to buildings and infrastructure in Kumamoto City, Mashiki Town, Minami Aso Village, 
and Nishihara Village (Section 4).  

 
Figure 5.1 Location map of damaged bridges or other infrastructure and of ground failures that were visited 
during the EEFIT mission (image source: Google Earth). 

5.1 Bridges 
There were multiple bridge failures across the Kumamoto region as a result of landslides, fault rupture 
and ground shaking. Numerous bridges along Road 28, which crossed above or were in close 
proximity to the Futagawa Fault, were damaged 

5.1.1 Oogiribata Bridge 

The Oogiribata Bridge (32.8425ºN, 130.9284ºE), constructed in 2000, is an approximately 250-m long 
5-span steel girder bridge with two large concrete columns on piers. The body of the bridge remained 
structurally intact but the foundation connection failed, displacing the bridge from the road. The bridge 
appeared to have been moved by the earthquakes (Figure 5.2). Closer inspection of the bridge piers 
and deck-pier connections identified no cracking or leaning of the pier columns, indicating that a giant 
landslide immediately south of the bridge was not the cause of the failure. The rubber metal bearings 
at the foundation connection moved 1.2 m towards the north, suggesting that the seismic loading 
during the Kumamoto earthquake exceeded the design loading for these bearings (Figure 5.3). 
Images from Google Earth show that the slope failure and bridge displacement occurred during the 
mainshock on 16 April. The bridge appears to have replaced an old road that followed the topography 
across the slope which insinuates that slope stability was a concern prior to the seismic event. 

28 

28 

28 
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Figure 5.2 Interaction between the landslide and bridge abutments of the Oogiribata Bridge: (a) view from the 
western end of the bridge looking east at the toe of the landslide, (b) looking west at the eastern pier from the 
underside of the bridge on the eastern end, and (c) looking west at the western pier (Ikeda et al., 2016). 

      
Figure 5.3 Failure of the bearings beneath the Oogiribata Bridge: (a) view of the failed bearings from the 
underside of the bridge and (b) view from the top of the bridge. 

(a) 

~1.2m north 

(b) 

(a) 

(b) 

(c) 
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5.1.2 Kuwatsuru Bridge 

The Kuwatsuru Bridge (32.8516ºN, 130.9454ºE) is a 150-m (approximately) long cable-stayed bridge 
crossing a NW-SE low relief and heavily vegetated valley. The bridge is supported by one large 
concrete column. The damage observed was similar to that of Oogiribata Bridge; the road surface and 
barriers on the bridge remained relatively undamaged but there was failure at the foundation 
connection. Vertical displacement at the foundation connection was caused by settlement of the road 
and abutment rather than uplift of the bridge (Figure 5.4). Google Earth imagery identifies that the 
bridge withstood the foreshock on 14 April but failed during the mainshock on 16 April.  

      

Figure 5.4 Foundation connection damage of the Kuwatsuru Bridge: (a) failure of deck-abutment connection at 
the eastern end and (b) damage to the bearing at the eastern end (Ikeda et al., 2016). 

5.1.3 Ooginosaka Bridge 

The Ooginosaka Bridge (32.8622ºN, 130.9516ºE) is a 130-m long cantilever bridge on Road 28 that 
crosses an EW trending valley. The bridge road surface remained undamaged but the foundation 
connection experienced bilateral shearing (Figure 5.5). The abutments remained intact but the 
bearings were damaged as a result of this bilateral movement. Photos from Ikeda et al. (2016) show 
similar oblique shearing in the bearings at the top of the concrete columns. 

      

 
Figure 5.5 Foundation connection damage of the Ooginosaka Bridge: (a) surface connection at the northern end; 
the relative movement occurred in N-S and E-W directions, (b) underside of the northern bridge abutment 
showing oblique shearing of the bearings (Ikeda et al., 2016), and (c) very little damage to the bearings at the top 
of the concrete columns (Ikeda et al., 2016). 
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5.1.4 Tawarayama Bridge 

The Tawarayama Bridge (32.8634ºN, 130.9599ºE) is a 150-m long cantilever bridge with one large 
concrete column crossing a SSE-NNW trending, heavily vegetated valley. There were both horizontal 
and vertical displacements between the bridge and the road as a result of the bearings moving 
laterally and the embankment failing below the abutment foundations (Figure 5.6).  

      
Figure 5.6 Damaged foundation connections of the Tawarayama Bridge (Ikeda et al., 2016): (a) movement of the 
bearings at the eastern abutment and (b) damage to the foundations of the abutment of the west end. 

5.1.5 Bridges along the Kiyama River 

Settlements of the flood defence embankments occurred along the Kiyama River, south of Mashiki 
Town Office and as a result there were vertical displacements between the roads and the bridges. 
Vertical displacements between the road and bridge were measured by the EEFIT as (Figure 5.7): 

Bridge 1: 0.48 m at the north-western end & 0.4 m at the south-eastern end 
Bridge 2: 0.50 m at the north-western end & 0.6 m at the south-eastern end 
Bridge 3: 0.35 m at the north-western end & 0.35 m at the south-eastern end 

The embankment fill consisted of gravelly, slightly sandy silt with small amounts of clay. Poorly sorted 
sediments, if unconsolidated, could be prone to settlements during periods of intense shaking, which 
could explain the settlements of the embankments flanking the river. The abutments of the bridges 1 
and 2 showed minimal signs of cracking and the piers remained intact. The reinforced concrete piers 
at the bridge 3 were damaged, with the reinforcement bulging and shearing in an approximately NE-
SW direction (Figure 5.7). 

 

(a) (b) 
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Figure 5.7 Settlements of flood defences and damage to bridges along the Kiyama River: (a,d) settled embankments relative to the bridge abutments, (b) embankment 
settlements causing collapse of concrete protection, (c,f) vertical displacement between the road on the embankments and the bridges, and (e) damage to bridge piers (image 
source: United States Geological Survey and Google Earth). 
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5.2 Tunnels 
The Tawarayama Tunnel (32.8601ºN, 130.9646ºE) is a road tunnel (Road 28) 2057 m in length that 
passes through the caldera wall of Mount Aso (Figure 5.8). The tunnel portal in the west is located 
above the Futagawa Fault and as a result suffered high axial compression forces causing fracturing 
and collapse of the tunnel wall cladding. The fractures in the tunnel wall and the uplifted drain covers 
indicate a NEE-SWW compression. The shearing in the tunnel is dipping to the southwest and 
represents compression of the fault rather than lateral shearing of the Futagawa Fault at this location. 

      
Figure 5.8 Shearing on the side wall of the Tawarayama Tunnel showing a NEE-SWW compression. 

5.3 Roads 
The majority of road damage observed was either above or close to the Futagawa Fault or in the 
failed zone of landslides. Vertical displacements of roads were visible in the northern area of Aso 
Caldera where the fault ruptured at the surface, causing extension and therefore graben like 
structures on the road surfaces (Figure 5.9). 

      
Figure 5.9 Vertical road displacements in the northern area of Aso Caldera. 

There was significant damage along Road 28 between Nishihara Village and Tawarayama Tunnel 
which is above and in close proximity to the Futagawa Fault (Figure 5.10). The straight sections on 
the road were less damaged compared to the road bends where slope failure above and below the 
road was common. Compression and shearing features in the road surface were representative of the 
tectonic stresses and fault rupture (Figures 5.10a, 5.10e, and 5.10f) as most compression was seen 
in a NEE-SWW direction and the shearing features trended approximately NE-SW. The connections 
between road and bridge were zones of weakness and commonly destroyed (Figure 5.10d). Slope 
failures above and below the road caused cracking and lateral movements and bulging of the road, 
respectively (Figures 5.10b and 5.10c). 

SW NE 
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Figure 5.10 Road damage along Road 28: (a) compression features on the road surface, (b) bulking at the road bend, either caused by compressional fault movement or bulging 
at the toe of a slope failure, (c) cracking and collapse of the road at the crest of a slope failure, (d) compression features at road-bridge connection and sinkhole, (e) shearing 
seen on the road surface trending roughly NE-SW, and (f) compression features on the road surface in E-W direction and signs of vertical ground shaking revealed as displaced 
tarmac cover (image source: United States Geological Survey and Google Earth). 
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5.4 Dams 
The Oogiribata Dam (earth-fill; 32.8409ºN, 130.9318ºE) is located along Road 28 just outside of 
Nishihara Village (Figures 5.1 and 5.11a). The dam is located directly above the Futagawa Fault. The 
retaining walls of the spillway were damaged and tilted significantly; the control gates were not 
functional (Figure 5.11b). As a result, a large volume of water leaked out of the reservoir after the 
mainshock, however, there were no fatalities/casualties associated with this failure. The failure of the 
retaining walls appeared to be caused by movement of the soil behind the walls, causing lateral 
movement and tilting of the structures. Signs of the compression and shearing were evident in the 
northern and western sides of the dam (Figures 5.11c and 5.11d). Much of the damage showed E-W 
to NE-SW compression and shearing which is expected when a segment of the Futagawa Fault is 
cutting NE-SW through the spillway. There was also a slope failure on the eastern side of the dam. 
This failure was probably caused by the water level change as the reservoir was drained.  

      

      
Figure 5.11 Damage of the Oogiribata Dam: (a) reservoir, (b) failure of the retaining walls at the spillway, (c) 
compression features in the dam wall showing a NS compression, and (d) shearing features in the dam wall. 

5.5 Landslides 
Multiple landslides have been observed around Aso Caldera, including earth flows, debris flows, 
slides and slumps (Figure 5.12). 10 out of 49 deaths during the Kumamoto earthquakes were caused 
by landslides. The majority of the slope failures occurred around Aso Caldera and Mount Aso where 
the relief is high. The slopes are commonly gentle at the base (less than 10°) becoming steeper 
(>60°) towards the top of the Aso Caldera rim where volcanic vents are also observed (Figure 5.13). 
The upper slopes are generally formed of extrusive igneous rocks covered by a thin layer of residual 
soil and ash, whilst the gentle lower slopes are mainly mantled by thick layers of residual volcanic 
soils overlying pyroclastic deposits (Figure 5.14). Narrow steep valleys are common in this region and 
steep-side gorges can be up to 70 m in height, which are also prone to multiple cliff collapse during 
periods of high rain and seismic activity. The highest density of the landslides is concentrated in the 
areas where strong shaking was observed. This zone is in close proximity to the Futagawa Fault 
which intersects with the western Caldera wall.  
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Figure 5.12 Slope failures around Aso Caldera (highlighted in red) caused by the Kumamoto earthquakes 
(http://www.slope.dpri.kyoto-u.ac.jp/disaster_reports/2016KumamotoEq/map0418cont_s.jpg; image source: 
Goole Earth). 

 
Figure 5.13 Debris flows on the steep sides of Aso Caldera.  

 
Figure 5.14 Geology of Kumamoto Prefecture. The brown colours represent extrusive volcanic rocks, whereas 
the blue, green, and cream colours represent sedimentary deposits (image source: Geological Survey of Japan, 
https://gbank.gsj.jp/geonavi). 
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A giant landslide, 950-m long and 200-m wide, occurred near the Aso Bridge (32.8841ºN, 
130.9889ºE) in Minami Aso Village (Figure 5.15). The failure was a large debris avalanche that 
originated at the slope crest, depositing hundreds of thousands of cubic metres of rock and soil into 
the gorge below. Multiple slope failures were also seen downstream. As is shown in Figure 5.16, the 
slide surface was smooth and neat, which implies that the failure was a flow rather than a slide or 
slump. Several highways nearby (Road 57 and Road 325) were overwhelmed and the Aso Bridge 
was destroyed. According to local media, one person who was driving near the bridge at the time of 
the event was killed. At the visit of the Aso Bridge, remotely controlled machinery was seen clearing 
away the debris and tidying the toe of the failure.  

Approximately 1 km downstream of the Aso Bridge, a debris flow was observed near the Choyo 
Bridge (32.8750ºN, 130.9838ºE). Large rock/soil flowed down the 50º-60º valley side, as shown in 
Figure 5.17. Extensive cracking was observed at the upslope part of the landslide. The Choyo Bridge 
and ground transition zone showed significant settlement, thereby suffering great damage. This 
bridge and several highways nearby were blocked at the time of site visit. 

 
Figure 5.15 Large landslides near the Aso Bridge and Choyo Bridge (image source: Google Map). 

      
Figure 5.16 Giant earthflow that destroyed the Aso Bridge. 
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Figure 5.17 Debris flow near the Choyo Bridge. 

A large landslide was observed at the Oogiribata Bridge (Figure 5.18). The landslide was 
approximately 200-m wide and 100-m long. It was a composite failure consisting of a mixture of 
toppling (trees tilting downslope), rotational failure (trees tilting upslope), rock falls, and transitional 
failure/earth flow. A road that was originally following the topography and hugged the valley side had 
been completely destroyed and carried downslope by the landslide. This suggests that the Oogiribata 
Bridge had been constructed because slope stability was already a concern. Shotcrete on the slope 
surface had been displaced down the slope with the soil that had moved beneath it. This is likely 
because there were no soil nails or rock bolts installed into the slope. 

 
Figure 5.18 Landslide at the Oogiribata Bridge looking south at the failure from the bridge deck. 

A large number of landslides were observed along Road 28. The slopes in this region are mostly 
gentle, i.e. 10º-30º, which are mainly covered in ash rich volcanic soils, including pumice. Small to 
moderate avalanche/debris flows were observed along the road. Extensive cracking, ranging from a 
few centimetres to larger than 1 m at the crest of the landslides, was commonly seen on roads 
(Figure 5.19). As a result of slope failures, several facilities along the highway, such as pipelines, 
small power switching board stations, and guard rails, have been destroyed (Figure 5.20). 
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Figure 5.19 Extensive cracking of roads. 

      
Figure 5.20 Damage to infrastructure facilities near the entrance of the Tawarayama Tunnel. 

5.6 Slope stability measures and retaining structures 
There were a number of slope failure mitigation measures seen across the Kumamoto region, some 
of which failed and some of which remained standing. At the most south-western closed section of 
Road 28, various slope stability structures had been put in place. The rock bolts and wire mesh that 
previously protected from rock falls and slope failures have completely collapsed probably caused by 
either too much material collapsing behind the wire mesh to exceed the mesh’s capacity or due to the 
rock bolts failing. A concrete retaining wall with vertical and horizontal struts appears to have been 
distorted but has not failed completely (Figure 5.21c). The only slope failure mitigation structure that 
remained standing was a giant concrete retaining wall (Figure 5.21b).  

Shotcrete was commonly seen across the region and on most occasions the slope had failed and 
sheared the shotcrete away from the slope (Figure 5.22). There were no rock-bolts or drainage 
installed with any of the shotcreted slopes observed. It appeared that without drainage and/or rock 
bolts this slope failure mitigation technique was unsuccessful. 
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Figure 5.21 Slope stability measures along Road 28 at the westerly road blockage: (a) rock bolts and wire mesh 
supporting boulders and other fallen debris from the slope failed, (b) giant concrete retaining wall remained 
standing although large amounts of debris have fallen behind the structure, (c) deformed retaining wall with 
vertical and horizontal struts, and (d) cracking on the road at the crest of a slope failure downslope from the road. 

      
Figure 5.22 Failure of sprayed shotcrete during slope failure: (a) eastern edge of the giant landslide at the 
Oogiribata Bridge and (b) near-vertical slope with shotcrete; the shotcrete has fallen but there has been minor 
failure of the soil. 

A number of retaining walls failed in the Kawayo district of Minami Aso Village. Along the main road 
that passes through the Kawayo district, a concrete retaining wall was tilting towards the north and 
one of the blocks had completely toppled over (Figure 5.23a). The material behind the retaining wall 
was sandy silt with some clay. This failure likely occurred during ground shaking; soil movement 
behind the retaining wall causing it to tilt. In one of the side streets, a retaining wall had completely 
collapsed on the northern facing side while on the southern facing side remained standing. The 
material behind the retaining wall was sandy silt with small amounts of clay. The cause of the collapse 
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was not apparent as remediation works had already started (Figure 5.23b). A large retaining wall in 
the form of large boulders also failed as a result of slumping of the soil behind the wall (Figure 5.24). 

      
Figure 5.23 Retaining wall failures in the Kawayo district of Minami Aso Village. 

 
Figure 5.24 Slumping of the soil behind a retaining wall in the Kawayo district causing it to collapse. 

A concrete retaining wall opposite the Mashiki Town Office car park failed, whilst the adjacent 
retaining structure remained standing (Figure 5.25). The neighbouring, intact, retaining wall had in-
build drainage, whereas the partly collapsed retaining wall did not. Seepage channels were visible in 
the soil behind the wall. A combination of these factors indicates that drainage was a major reason for 
the collapse. 
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Figure 5.25 Retaining wall failure in Mashiki Town. 

5.7 Liquefaction 
Liquefaction is caused by the transformation of soil from a solid state to liquid. It occurs when the soil 
loses its strength during the application of cyclic loading or sudden loading. In saturated sand, excess 
pore water pressure is generated during the seismic loading, causing a decrease in the effective 
stress (’): ’ =  – u, where  is the total overburden stress and u is the pore pressure. In the 
extreme case, the effective stress becomes zero, and the soil grains lose contact with each other, so 
that they are floating in the pore water without any confining support from the surrounding soil. As a 
result, the soil loses its strength and behaves like viscous fluids rather than solid. As a consequence 
of the Kumamoto earthquakes, liquefaction was observed as sand boils, differential ground 
settlement, and localised lateral displacement. Liquefaction sites that were visited by the EEFIT 
during the field work were the Kumamoto Port, Akitsu River (Mashiki Town and Kumamoto City), and 
Kamiezu Lake.  

5.7.1 Kumamoto Port 

The Kumamoto Port (32.7639ºN, 130.5894ºE) is located west of Kumamoto City (Figure 5.26). This 
port is an artificial island built in Ariake Sea. Extensive liquefaction occurred, resulting in ejected 
sands at various locations (Figure 5.27). The possible explanation for sand boils is that, when the 
pore water pressure is increased during the seismic event, it applies pressure on the above strata 
causing many cracks and fissures. The pore water pressure is released through these gaps bringing 
the sands with it. At some locations, there was water on the ground, indicating that the water table 
was close to the surface. The soil profile for the Kumamoto Port shows that the ground is sand up to 
3.5 m from the surface. The estimated peak ground acceleration at the Kumamoto Port was 0.5 g 
(Goda et al., 2016), which is sufficiently large to trigger liquefaction in sand soil layers (Idriss and 
Boulanger, 2008). 

Large sinkholes were observed at different locations in the port which are likely results of poorly 
compacted fill at the path edges. Risen manhole covers were also observed, causing obstructions for 
pedestrians (Figure 5.28). When the soil beneath the manhole covers liquefies, the pipes lose the 
support from the surrounding soil. Consequently, under the effect of inherent buoyancy force due to 
rising pore water pressure, the pipes rise causing the manhole cover to pop up. 

Liquefaction-induced settlements were observed at several locations in the port. The measured 
settlements ranged between 0.1 m to 0.15 m. Figure 5.29 shows the induced settlement at the 
entrance of the main hall, inside the Kumamoto ferry terminal. Ground settlement occurs as water 
dissipates from soil, therefore, subsurface soil losses a large part of its total volume. This is 
sometimes accompanied by ejected sands which will also reduce the total volume of soil in the 
subsurface, resulting in settlement. Figure 5.30 shows the damage at the ferry terminal where an 
overpass steel bridge was found to be out of service as a result of liquefaction-induced settlement. 
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Figure 5.26 Location of the Kumamoto Port (image source: Google Map). 

      
Figure 5.27 Sand boils at the Kumamoto Port. 

      
Figure 5.28 Liquefaction-induced failures at the Kumamoto Port. 
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Figure 5.29 Liquefaction-induced failures near the ferry terminal. 

      
Figure 5.30 Damage to the steel overpass bridge at the ferry terminal due to liquefaction-induced settlement. 

5.7.2 Akitsu River 

The Akitsu River runs through Mashiki Town and Kumamoto City as shown in Figure 5.31. 
Liquefaction was observed along the river, where significant damage to the asphalt surface occurred. 
Within the residential area, polyester bags filled with soil and wrapped with polythene were laid along 
the embankments as a temporary flood defence (as seen in Figure 5.7b along the Kiyama River), 
indicating that there may have been overall settlement of the area. 

Liquefaction was apparent at many locations along the river and signs of ejected sands were 
observed. As shown in Figure 5.32a, sand erupted from the edge of a foundation and footpath. 
Moreover, a tennis court was completely liquefied, and a large quantity of liquefied soil was apparent 
at the surface (Figure 5.32b). Another type of ground failure was apparent in the area as the ground 
concave down as shown in Figure 5.33a. Figure 5.33b shows pavement cracks, resulting in uplifting 
of manhole covers. 

Relative lateral displacement of two bridge slabs was observed at a bridge over the Akitsu River. This 
failure may have been caused by lateral movement of the bridge abutment (liquefaction was observed 
close to the bridge), which may be the reason for no damage observed at the second pier (Figure 
5.34). 

Moreover, a high-rise reinforced concrete apartment building, located near the Akitsu River, suffered 
extensive diagonal shear cracks, especially at the first three floors (Figure 5.35), while several signs 
of liquefaction were observed around the building. A separation between the building’s foundation and 
the main entrance was also observed due to the relative displacement between the building and the 
ground. 
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Figure 5.31 Locations of the Akitsu River (white rectangle) and the Kamiezu Lake (orange rectangle) (image 
source: Google Map). 

      
Figure 5.32 Widespread of liquefaction at: (a) bottom of a foundation and (b) a tennis court. 

      
Figure 5.33 Ground failures due to liquefaction: (a) ground settlement and (b) tension cracks. 
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Figure 5.34 Lateral displacement of a bridge along the Akitsu River. 

      
Figure 5.35 Bearing failure of an apartment building near the Akitsu River. 

5.7.3 Kamiezu Lake 

Extensive ground settlements with localised lateral displacement and cracking occurred on the 
embankments of the Kamiezu Lake in Kumamoto City (Figure 5.31). Usually, man-made riverbanks 
have shallow slopes down towards the rivers. When the sub-layer liquefies and the generated excess 
pore water pressure is prevented from escaping to the surface (capped by a low permeable or 
impermeable layer at the surface), the lateral movement occurs for the whole liquefied layer. Tension 
cracks indicate that lateral spreading had occurred in this area (Figure 5.36). 

      
Figure 5.36 Liquefaction-induced lateral spreading at the Kamiezu Lake. 
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5.8 Conclusions on the infrastructure damage and geotechnical failures 
Extensive investigations on infrastructure and geotechnical damage were conducted in Kumamoto 
City, Mashiki Town, Minami Aso Village, and Nishihara Village. The majority of the damage occurred 
close to the Futagawa Fault where ground shaking was strongest and there were fault surface 
ruptures. The types of observed ground failures included surface rupture, ground settlement, 
landslides, and liquefaction which resulted in damage to bridges, dams, tunnels, roads and over-
ground facilities.  

The main observations are as follows: 

1 Multiple bridge failures across the Kumamoto region were observed as a result of landslides, 
fault rupture, and ground shaking. Extensive damage was observed along Road 28, which runs 
above and in proximity to the Futagawa Fault. All of the bridges between Nishihara Village and 
Tawarayama Tunnel were destroyed. 

2 Significant cracking within the Tawarayama Tunnel was observed at the western portal which is 
located above the Futagawa Fault. The tunnel at this location suffered high axial compression 
forces, resulting in fracturing of the tunnel lining. 

3 The Oogiribata Dam, which is located directly above the Futagawa Fault, showed damage in 
the retaining walls of the spillway. As a result, a large volume of water leaked out of the 
reservoir after the mainshock, however, there was no complete failure of the dam. 

4 The roads that were above or close to the Futagawa Fault or were located at the toe of 
landslides were heavily damaged. Vertical displacements of the roads were visible in the 
northern area of Aso Caldera where the fault ruptured to the ground surface, causing extension 
and therefore graben like structures on the road surfaces. Intense ground shaking of the road 
fill also appears to have caused a significant amount of lateral spreading across the region with 
higher relief.  

5 Multiple landslides have been observed around Aso Caldera in the form of earth flows, debris 
flows, slides, and slumps. The highest density of the landslides was concentrated in the areas 
where strong shaking was observed. This region was within close proximity to the Futagawa 
Fault which intersects the western caldera wall. The slopes were commonly gentle at the base 
(less than 10°) becoming steeper (>60°) towards the top of the caldera rim where volcanic 
vents were also observed. 

6 Liquefaction, represented by sand boils, differential ground settlement and localised lateral 
displacement, was observed at the Kumamoto Port, along the Akitsu River (Mashiki Town and 
Kumamoto City), and near the Kamiezu Lake. In the Kumamoto Port, evidences of sand boiling 
were extensively observed, where building differential settlement occurred. Along the Akitsu 
River, the soil was mainly composed of sand and silt, which tend to develop liquefaction more 
easily under high excess pore water pressure. The bridges and buildings nearby showed 
differential settlements, tilting, and shear cracks. Extensive localised lateral displacement and 
ground cracking were observed on the embankments of the Kamiezu Lake. The surface of the 
man-made riverbanks was capped by a low permeable or impermeable layer which prevented 
the dissipation of excess pore water pressure, resulting in lateral spreading of liquefied soil. 
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6 Relief and Recovery 

6.1 Emergency response 
Whilst in Japan, the EEFIT was able to interview emergency response personnel from the Japan 
Voluntary Organisations Active in Disaster (JVOAD, http://jvoad.jp); representatives from the 
Kumamoto City Office and from the Kyoto Prefecture civil defence team; local volunteers and 
personnel from the Mashiki Town and Uki City Offices. The team members attended one of the nightly 
non-governmental organisation (NGO) coordination meetings at the Kumamoto City Office and also 
conducted interviews at evacuation centres, managed by both the city and regional offices, and talked 
to the managers as well as some evacuees. This section summarises the observations from these 
personal interviews and is supplemented by factual information on relief and recovery activities 
following the 14 and 16 April Kumamoto earthquakes from the Fire and Disaster Management Agency 
and other sources. Obviously, as of December 2016, the relief efforts and recovery planning are still 
ongoing, and some of these plans and information are subject to change in time. 

6.1.1 Organisation of city level and regional disaster management 

The population of Kumamoto Prefecture is 1,786,170 (2015 census). Over ten percent of the 
population were affected directly and at peak times, a day after the 16 April earthquake, there were 
183,883 evacuees housed in 855 shelters.  There are still 301 evacuees residing in 12 shelters at the 
time of writing this section (4 October 2016). The Cabinet Office disaster response mechanism is 
shown in Figure 6.1. Supported by the Kumamoto City Office, the other agencies involved in support 
of the disaster relief efforts after this earthquake included: 

• Affected prefecture offices 
• Japan Ground Self Defense Force (JGSDF) 
• Non-profit organisations (NPOs), such as JVOAD; JVOAD is the main NPO in charge of 

coordinating the relief efforts 
• Other prefecture volunteers 

6.1.2 Support from other prefectures 

Each prefecture civil protection team was assigned to support an affected area (Figure 6.2). The 
support teams from other prefectures have been working in rotation since mid-April and based at the 
Kumamoto City Office. The relief coordination has been divided into four regions:  

• Centre:  Kumamoto City  
• North:  Minami Aso Village, Nishihara Village, etc. 
• West:  Mashiki Town, etc. 
• South:  Mifune Town, Uto City, etc. 

The coordinators of NPOs, national and local authorities meet every night at 19:00 PM at the 
Kumamoto Prefecture Office. There have been frustrations that despite these meetings, issues raised 
by the regional offices have not been addressed by the Kumamoto Prefecture Office. Kumamoto City 
operates separately from the rest of the affected region. In talking to officers from the Kyoto 
Prefecture Office and the World Food Programme during the visit, they also voiced their concerns at 
the slow pace of the relief efforts and lack of decisions made. An EEFIT member attended one of 
these meetings where each attendee (around 30 people) reported on progress, shared information 
and issues on their assigned area, but there was little in the form of exchanges of ideas and problem 
solving. Despite the intention of ensuring information flow between the local government authorities 
and all staff and volunteers working in the field, in reality, this process did not aid response efficiency 
(World Food Programme, personal communication). Moreover, there was frustration amongst 
municipality officers getting little or no responses to requests sent to the main Kumamoto Prefecture 
Office.  

http://jvoad.jp/
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Figure 6.1 Cabinet Office disaster response mechanism. 

 
Figure 6.2 Areas affected by the earthquake (in black) are supported by personnel from different prefectures. For 
example, Mashiki Town is supported by Fukuoka Prefecture and Union of Kansai Governments. 
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Some other issues were highlighted by relief responders as having an impact on the speed and 
effectiveness on the humanitarian response.  

Sequence of events: Structural assessments and road repairs were underway after the 14 April event 
when the second, more damaging earthquake hit. Some residents who had been told that it was safe 
to return home after the first event were traumatised by the experience of the second event and 
refused to go home even though their homes were not significantly damaged. This increased the 
number of people needing temporary shelters in the weeks and months after the event.  

Damage to infrastructure: There was extensive damage to infrastructure, railways, ports, and roads 
(Sections 4 and 5). This hampered initial response as personnel were unable to or there were 
significant delays in getting in and out of the affected areas. 

Damage to evacuation centres: Some evacuation centres could not operate at their full capacity due 
to damage to parts of the designated buildings that were deemed unsafe. Evacuees were therefore 
either turned away, had to sleep in makeshift tents, in cars or in corridors. Though each household 
should have been assigned to an evacuation centre, there was confusion in post-event situations. 
One interviewee recounted how her family with a disabled daughter was turned away from three 
centres and ended up sleeping in their cars due to overcrowding. 

Secondary injuries and deaths: In all, 115 people died as a result of the two earthquakes of 14 and 16 
April 2016. Out of the 50 direct deaths, over two thirds (68%) were older people (age over 65 years) 
while 37 deaths were attributed to building collapses, with the remaining 13 deaths caused by 
landslides (Table 6.1). 7 of the 37 died on 14 April, and 30 died in the mainshock with Mashiki Town 
being the most affected area. At least 20 people died in collapsed houses built before 1981. After the 
14 April 2016 event, some residents in fully or partially damaged homes had already moved to 
evacuation centres, and an interviewee in Minami Aso Village mentioned how he perhaps had 
‘escaped death’ as his house completely collapsed after the 16 April event. There were also 
associated indirect deaths including cardiac arrests as shown in Table 6.2, which are attributed to the 
post-quake hardships, health and physical surroundings of the evacuees. 

This event resulted in indirect deaths associated with ‘economy class syndrome’ because some 
evacuees slept in their cars for long periods of time. The association with deep vein thrombosis (DVT) 
was very worrying for the authorities and all around in the evacuation centres, there were notices 
giving advice to evacuees on how to avoid this condition as shown in Figure 6.3. Evacuees slept in 
their cars due to a variety of reasons. Some had to in the first few nights as the evacuation centres 
were over capacity due to damage to the evacuation buildings themselves. Others chose to stay in 
their cars as families were worried about security and privacy, some did not want their children to be 
sleeping in close proximity to strangers, and others because they had pets1.  

Table 6.1 Direct and indirect deaths resulting from the two events by municipality (as of 4 October 2016). 

Municipality Direct deaths Indirect deaths 
Kumamoto City 4 45 

Uto City 0 2 
Kikuchi City 0 1 
Koshi City 0 3 

Oozu Town 0 3 
Aso City 0 2 

Takamori Town 0 1 
Minami Aso Village 16 1 
Nishihara Village 5 0 

Mifune Town 1 1 
Kashima Town 3 1 
Mashiki Town 20 3 

Yatsushiro City 1 1 
Hikawa Town 0 1 

Kami Amakusa City 0 0 
Total 50 65 

                                                      
1 A year on, the number of reported indirect deaths has risen to 170, with the total fatalities at 225 and with more 
than 47,000 people remaining on the list of displaced (Japan Times, 2017). 
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Table 6.2 Trend of indirect deaths by municipality (as of 4 October 2016). 

Municipality 3 May 3 June 4 July 3 August 5 September 3 October 
Kumamoto City 10 10 10 23 30 45 

Uto City 1 2 2 2 2 2 
Kikuchi City 0 0 0 0 1 1 
Koshi City 0 0 0 0 3 3 

Oozu Town 0 0 0 0 3 3 
Aso City 2 2 2 2 2 2 

Takamori Town 0 1 1 1 1 1 
Minami Aso Village 1 1 1 1 1 1 
Nishihara Village 0 0 0 0 0 0 

Mifune Town 1 1 1 1 1 1 
Kashima Town 0 1 1 1 1 1 
Mashiki Town 1 1 1 1 3 3 

Yatsushiro City 0 0 0 0 0 1 
Hikawa Town 1 1 1 1 1 1 

Kami Amakusa City 0 0 0 0 0 0 
Total 17 20 20 33 49 65 

 
Figure 6.3 Notice explaining preventative measures for ‘Economy Class Syndrome’ found in evacuation centres. 

6.1.3 Earthquake support programs 

The earthquake support programs were put in place for people affected by the 2016 Kumamoto 
earthquakes. The guidelines explained the different physical, financial, and social support available to 
evacuees as shown in Figure 6.4. 

A victims’ certificate was issued per household and was required for insurance claims. These were 
issued only after rapid structural assessments were carried out. It was noted during the team’s visit 
that these assessments were carried out by different authorities and in many cases had to be 
repeated, resulting in delays in the issue of the disaster victims’ certificates. 

The evacuation centres housed three types of people: people with partially collapsed or completely 
collapsed houses; people living in residential blocks with disrupted services, and those who are too 
scared to return home. The affected municipal governments provided gymnasiums, schools and other 
public buildings for use as public shelters in Kumamoto, Oita, Nagasaki, and Fukuoka Prefectures. A 
day after the 16 April earthquake, there were 855 shelters and 183,883 evacuees recorded. Due to 
the restart of schools in the region, many shelters housed in school gymnasiums had to be closed on 
8 May to allow school children to return to classes on 9 May 2016. All public shelters in prefectures 
other than Kumamoto were closed by 16 May 2016. 
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Figure 6.4 A summary of the earthquake support programs for the people affected by the 2016 Kumamoto 
earthquakes. The full guidelines explain the physical, financial and social support available to evacuees. 

The team visited evacuation centres in all four relief coordination regions in Kumamoto Prefecture. 
The organisation and management of these varied depending on location and size of the housed 
population. The largest centre was in Mashiki Town and was managed by three groups: the YMCA, 
the Mashiki Town Office, and a local NGO who coordinated the tented accommodation as shown in 
Figure 6.5. At this evacuation centre, an outdoor bathing facility was provided and managed by the 
JGSDF (Figure 6.6). Inside the Mashiki Town sports and community centre, which also includes a 
library, the affected population were sleeping where they could, in corridors as well as inside the main 
hall of the gymnasium. One of the problems mentioned by evacuees during interviews was lack of 
space for belongings and a fear of theft. This is in contrast to evacuation centres visited by the EEFIT 
after the Tohoku earthquake and tsunami, where the victims had very little in the form of possessions 
since most of these were washed away by the tsunami. There was a police presence at all the 
centres the team visited in Kumamoto but surprisingly at this evacuation centre, they did not have an 
updated register of the residents at the centre. 

      
Figure 6.5 Mashiki Town evacuation centre. 
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Figure 6.6 Outdoor bathing facility operated by the Japan Ground Self Defense Force at the Mashiki Town 
evacuation centre. 

During the team’s visit, it was seen that trailers were used to house different amenities at the 
evacuation centre in Mashiki Town. For example, Japan Post provided a mobile post office from 25 
April (Figure 6.7). Figure 6.7 also shows part of a pet boarding facility, where about 60 cages in three 
buildings with an air conditioner and dog walking area were established from 16 May. This prevented 
people from bringing pets indoors and also helped in moving some families from their cars and tents 
into the main gymnasium. The Mashiki Town Office approved the use of the trailers as welfare 
shelters for victims at the end of May 2016. It is the first time that a local government has embarked 
on the use of these trailers in post-disaster situations in Japan. 
The types of accommodation varied depending on where the displaced were housed. The team was 
given permission to take pictures inside the Uki City evacuation centre. Figure 6.8 and Figure 6.9 
show the arrangements of the accommodation. Common to all of the centres visited, dedicated staff 
from the local municipality office and volunteers from other regions of Japan were managing the 
facilities. There were timetables of the daily activities, meal times and other services on notice boards, 
like the one shown in Figure 6.10. There were also notice boards with important announcements from 
the government related to the relief and recovery operations. 

      
Figure 6.7 Vehicle post office and the office of pet boarding facility at the Mashiki Town evacuation centre. 
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Figure 6.8 Observed conditions inside a gymnasium at the Uki City evacuation centre. It accommodated around 
30 people during the day and around 100 people at night at the team’s visit on 27 May 2016. 

 
Figure 6.9 A family of three personalising their accommodation at the Uki City evacuation centre. 

 
Figure 6.10 An example of a notice board at the Uki City evacuation centre detailing the daily timetable for group 
activities, meal times, and health care services. 

Though most of the interviewees EEFIT spoke to were happy to be taken care of by the local 
government and with the provisions and information received, some issues were identified by the 
evacuees and the managers of evacuation centres during the interviews conducted by the team. 

From evacuees’ points of view: 

• There was a lack of privacy and excessive noise inside the centres, especially in the large 
gymnasiums. 
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• The Shigeru Ban cardboard column and curtain set-up (Figure 6.11) was criticised by families 
who were not able to see people approaching them and therefore felt insecure. 

• Some families have been forced to stay in cars and tents as other residents complained about 
noise their children were making. 

• Most have been moved a number of times since the earthquakes due to reopening of schools. 
• Some of the elderly wanted the box beds (Figure 6.12) but these were not often available. 

From evacuation centre managers’ points of view: 

• Some larger centres still (at the time of visit) did not have a register of the temporary residents. 
• Some victims abused the system and the lack of formal registration by obtaining supplies and 

meals from the centres even though they were no longer living in the centres. 
• Frustrations have been taken out on staff and most are not trained to deal with such issues. 
• With the rainy season approaching (at the time of the visit), evacuees sleeping out in tents were 

asked but unwilling to move indoors due to a lack of privacy and space. 
• Many of the prefecture staff have been affected themselves and are finding it hard to cope with 

managing the centres, their daily work at the municipality office and their own family lives. 
• The elderly were in the centres all day and treating them as in day care centres but this is not 

part of the evacuation centre’s remit. 

As of 4 October, there are still 301 registered evacuees at 12 evacuation centres, significantly 
decreased in the six months since the beginning of the crisis. 

 
Figure 6.11 Shigeru Ban cardboard column and curtain temporary shelter design.  

 
Figure 6.12 Raised ‘beds’ made of paper boxes. 
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6.2 Plans for recovery 
For Kumamoto City, the immediate plan at the time of the EEFIT mission was to move people from all 
temporary shelters to the base shelter in Kumamoto City. The Kumamoto Earthquake Recovery and 
Reconstruction Headquarters were formed and had their first meeting on 20 June 2016. The intention 
was to move people from temporary shelters to transitional houses by the end of July 2016. 

For other regions in the prefecture, arrangements were different. For example, there was a lottery for 
assigning transitional housing on 10 June for Mashiki Town, while in Nishihara Village the local 
residents were consulted to collectively plan the relocation of their communities in June 2016. 

As of 6 October 2016, the number of temporary housing constructed is shown in Table 6.3. As seen, 
six months after the event, over 90% of planned temporary housing have been constructed across the 
affected region. 

Table 6.3 The number of temporary housing planned and constructed (as of 6 October 2016).  

Municipality 
Planned Constructed 

Number of 
housing 
estates 

Number of 
houses 

Number of 
housing 
estates 

Number of 
houses 

Kumamoto City 9 541 9 541 
Uto City 6 143 4 117 
Uki City 6 176 4 143 

Misato Town 3 41 2 26 
Oozu Town 6 91 6 91 
Kuyo Town 1 20 1 20 

Aso City 4 101 4 101 
Ubuyama Village 2 9 2 9 

Minami Aso Village 8 401 8 401 
Nishihara Village 5 312 4 302 

Mifune Town 21 425 17 328 
Kashima Town 11 208 11 208 
Mashiki Town 18 1,562 16 1,492 

Kosa City 6 228 6 228 
Yamato Town 1 6 1 6 
Hikawa Town 3 39 3 39 

Total 110 4,303 98 4,052 

The Cabinet Office pledged 778 billion Japanese Yen (JPY) towards the restoration of the Kumamoto 
earthquakes. On 31 May 2016, 102.3 billion JPY was committed as a first financial injection for the 
reconstruction and recovery2. 

The proposed use of the funds is as follows:  

• 18 billion JPY for small and medium‐sized enterprises and agricultural assistance. The creation 
of a half price ‘trip ticket’ for trains and hotel charge to all seven prefectures in Kyushu Island to 
encourage commerce and tourism to the region (http://kyushu-fukkou.jp/). This is the first time 
that the Japanese Government has created a special grant for travel assistance.  

• 400 billion JPY – for supporting medium-sized enterprises: 
- 75% of the funds to the recovery paid by the Government and Prefectures. 
- 25% of the funds to the recovery paid by affected companies. 

• 53 billion JPY – for commerce, e.g. rebuilding of arcades along shopping streets affected by the 
earthquakes. 

Since May 2016, the Kumamoto Prefecture Office has published a road map to provide housing and 
life support, recovery support of the affected residential land, medical care, prevention education, etc. 
(Kumamoto Prefecture Office, 2016). In all, there are four categories and 28 plans, and these goals 
are to be achieved within the next four years. The four categories are as follows: 

                                                      
2 http://www.sankei.com/economy/news/160531/ecn1605310023-n1.html (in Japanese). 

http://kyushu-fukkou.jp/
http://www.sankei.com/economy/news/160531/ecn1605310023-n1.html


 

The Kumamoto Japan earthquakes of 14 and 16 April 2016  86 

 

• Reconstruction of housing and social services: nine plans have been proposed, a timeline for 
some of the goals was translated and shown in Figure 6.13. 

• Recovery of social infrastructure: seven plans. 
• Reproduction of local industry: ten plans. 
• Recovery of connection to the world (development of port facilities and sports): two plans. 

 
Figure 6.13 Chart showing the timeline for different goals set out by the Kumamoto City Office for housing and 
social services. 

The restoration-revival plan summary presents a future image for Kumamoto as one of: 

Hope: The future is full of dreams and hopes. 

Safety: Kumamoto can live in safety and security and be resilient against the disasters.  

Pride: Treasures are inherited to the future with much pride. 

Economy: Kumamoto has a stable and vibrant economy. 

Municipalities in Kumamoto Prefecture have been developing their own recovery plans. For example, 
as of 7 October 2016, a second development committee was held in Mashiki Town to formulate a 10-
year reconstruction plan. At this meeting, officials stated that they will request financial transactions, 
necessary business, and enactment of special legislation of the Government and Prefecture. For 
Mashiki Town, the key message for the future is to ensure that ‘people want to continue to live in the 
city and want to inherit to the next generation’. The reconstruction plan document is planned for 
publication in December 20163. 

6.3 Conclusions on the relief and recovery 
The organised but rigid pre-event disaster management structure and lack of power given to 
municipality officials and disaster management staff from other prefectures, may have worked against 
the relief efforts after the Kumamoto earthquakes. Even though many of the personnel deployed to 
Kumamoto from other prefectures have experience and important lessons learnt from previous 
national and international efforts, due to the traditional hierarchical structures, there were no means of 
implementing suggestions directly. This was seen by many interviewed as a waste of resources and 
time. One important observation from the EEFIT mission and the subsequent literature review is that 
relief and recovery strategies at the Kumamoto City level are deliberately separated from the 
surrounding regions. Though there is a need to differentiate due to the urban/rural mix and the 
number of population affected, the discrepancies have hampered coordination efforts and speed of 
the relief, and public consultation in the ensuing recovery. In Kumamoto City, decisions are 
                                                      
3 http://www.town.mashiki.lg.jp/common/UploadFileDsp.aspx?c_id=137&id=859&sub_id=1&flid=3363 (in 
Japanese). 

http://www.town.mashiki.lg.jp/common/UploadFileDsp.aspx?c_id=137&id=859&sub_id=1&flid=3363
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centralised, whereas in Nishihara Village for example, there is an emphasis on community 
consultation. The rate of recovery and the ability to ‘build back better’ may be dependent on the 
approach employed as seen in so many other examples of disaster recovery around the world (Platt 
and So, 2016). 

Even though local governments should have designated nearby school gymnasiums and sports 
centres as public shelters, as part of the disaster management plans, there were reports of confusion 
in the first few days after the 16 April earthquake as to where the affected families should go. The 
team interviewed a family who was looking after a severely disabled girl during their visit and found 
the accounts of lack of provisions and consideration from the local authorities to accommodate people 
in the girl’s situation troubling. The family had since decided to rent an apartment rather than wait for 
government support. 

Every place the team visited, the members were overwhelmed by the level of volunteer support and 
generosity of the local and national population. The frustration and challenge, like in many post-
disaster situations, were in better coordination and communication to utilise the goodwill and time of 
these volunteers more effectively.  

‘Ganbatte!’ is a phrase that captures the Japanese spirit to try one’s best and never give up. Six 
months on, the temporary housing construction plan is well under way and there are the beginnings of 
plans to address permanent housing, wellbeing, cultural heritage (including the restoration of the 
Kumamoto Castle and Aso Shrine amongst others; see Section 4), and the revitalisation of the region 
in the next four years. The new logo and motto from the Kumamoto Prefectural Government is 
‘Ganbaruken! Kumamoto-ken!’ meaning, ‘We won't give up! Kumamoto Prefecture!’ (Figure 6.14). 

 
Figure 6.14 The new logo for the Kumamoto Prefecture's earthquake reconstruction efforts, featuring the 
prefectural mascot Kumamon. The text reads: ‘Ganbaruken! Kumamoto-ken!’ meaning ‘We won't give up! 
Kumamoto Prefecture!’ (image courtesy: Kumamoto Prefectural Government). 
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