The Institution’s Representatives Overseas
Date published

N/A

First published: N/A

Price

Standard: £9 + VAT
Members/Subscribers: Free

Buy Now

Added to basket

Back to Previous

The Institution’s Representatives Overseas

The Structural Engineer
The Institution’s Representatives Overseas
Date published

N/A

First published

N/A

Price

Standard: £9 + VAT
Members/Subscribers: Free

Buy Now

THE APPOINTMENT of overseas representatives came about as a result of the increasing interest shown in the Institution and the rapidly growing number of applications for membership from various parts of the world. Local representatives were first appointed in India in 1932 ; other appointments followed as the need arose and within twenty-five years the Institution had representatives in Australia, British West Indies, Canada, Ceylon, East Africa, Hong Kong, India, Israel, New Zealand, Nigeria, Pakistan, Rhodesia and Nyasaland and Singapore.

Additional information

Format:
PDF
Publisher:
The Institution of Structural Engineers

Tags

Issue 13

Related Resources & Events

The Structural Engineer
Aluminium Structures

Aluminium Structures

ALUMINIUM owes its early development as a structural material to the aircraft industry, a field in which the low density of the material is a factor of paramount importance, outweighing its high initial cost. Its applications in other branches of structural engineering (specialist or experimental at first) began only about twenty five years ago, and progress was slow until the end of the last war when appreciation of the results of wartime research and development and the influence of the post-war shortage of steel led to a new interest in aluminium. During the last ten years an increasing number of light alloy structures have been built and while aluminium has been found to be a true economic solution in several specialist cases, it has been used as an interesting and novel solution in others. Research andevelopment have continued, and today aluminium alloys are available with properties appropriate to structural uses and are obtained in a wide range of sections, plates, sheets, etc. Gilbert Roberts

Price - £9
The Structural Engineer
Timber Construction

Timber Construction

FIFTY YEARS AGO the structural use of timber was entirely governed by the known properties of the raw material in its natural state. These properties had become known by trial and error and in consequence were defined by limitations rather than potentialities. The natural limitations on available dimensions, weakness in shear, inability to make a good tension joint or to maintain continuity around bends or at the ends of pieces, no effective control over moisture movement, no systematic evaluation of strength, no constructive knowledge of pathology and treatment, no apparent escape from unidirectional stress distribution : all factors which operated in the development of empirical techniques and the establishment of a fairly rigid code of traditional practice. P.O. Reece

Price - £9
The Structural Engineer
Theoretical Analysis

Theoretical Analysis

THE THEORETICAL analysis of the behaviour of engineering structures, as we know the subject today, can be said to date effectively from the end of the 18th century. Monumental structures had of course been built long before that and their impressive remains can still be seen in Egypt and Mesopotamia and especially in countries which were formerly part of the Roman Empire. But, so far as is known, the engineer- architects who built these great works had no theoretical principles to guide them and relied only upon trial and experiment and their own genius. Much the same can be said of the builders of the great cathedrals of Europe who carried the art of constructing masonry arches, vaults and buttresses to a level that has never been surpassed. It was not until the Renaissance that men began to enquire in a systematic way into the laws that govern structural behaviour but even then progress was slow for many years. The pace quickened in the 18th century especially in France where the "ingénieurs des ponts et chausstes" were attempting to apply the methods of mathematics systematically to the design and construction of the structures for which they were responsible. The foundation of the "Ecole des Ponts et Chaussdes" in 1747 marks the beginning of the practice of training engineers to use this scientific approach to their work, and the interchange of men and ideas between this school and the military corps of engineers was extraordinarily productive. The most important figure of this period is Coulomb whose work on the bending of beams, on torsion, on friction and on the stability of retaining walls was an immense step forward. In his efforts to deal with the problems of structural statics by scientific methods, but without losing sight of practical requirements, Coulomb was the first to deal with structural analysis in a recognisably modern manner. Professor J.A.L. Matheson

Price - £9