Discussion The Superstructures of Dungeness ‘B’ Nuclear Power Station by J.E. Taylor, R.
Date published

N/A

First published: N/A

Price

Standard: £9 + VAT
Members/Subscribers: Free

Buy Now

Added to basket

Back to Previous

Discussion The Superstructures of Dungeness ‘B’ Nuclear Power Station by J.E. Taylor, R.

The Structural Engineer
Discussion The Superstructures of Dungeness ‘B’ Nuclear Power Station by J.E. Taylor, R.
Date published

N/A

First published

N/A

Price

Standard: £9 + VAT
Members/Subscribers: Free

Buy Now

Mr. D. E. Thorp: I would like to give some of the main reasons that led to the final solution of the single raft over the whole area of reactor building. The raft is resting on about 30 m (100 ft) of medium sand with a relative density of about 50 to 60 per cent. I understand that little is yet known in the field of soil mechanics about stresslstrain relations within sand masses, and sophisticated analysis still assumes, I believe, a semi-infinite elastic medium. Hence the results must be treated with some reserve. Conscious of these uncertainties, we were faced with the design of superstructures whose differential settlements had to be strictly limited to avoid damage to finishes and plant. In particular, the goliath crane for the fuelling machine, which operates on a longitudinal rail system supported consecutively on the fuel handling unit, intervening steelwork and concrete pressure vessel, is particularly sensitive to undue differential settlement.

Additional information

Format:
PDF
Publisher:
The Institution of Structural Engineers

Tags

Opinion Issue 5

Related Resources & Events

The Structural Engineer
Discussion Test of a Fully Continuous Multi-storey Frame of High Yield Steel by R.F. Smith and E.H.

Discussion Test of a Fully Continuous Multi-storey Frame of High Yield Steel by R.F. Smith and E.H.

Professor J. Heyman: There is an enormous amount of new material in this paper and it is going to take us a long time to assimilate it. I would like to make one or two broad comments and not discuss the detailed results. One of the most interesting features is the use of realistic flexible joints rather than the rigid joints that were used in the previous tests. If I can summarize the test results, the beam behaviour using the flexible joints accorded pretty well with the predictions of the Joint Committee’s report, the behaviour of the columns was not so close, but the ultimate collapse loads reached by the columns were certainly on the right side-the Joint Committee’s method was conservative. All of these observations, while differing in degree, were in fact results repeated from the previous test with the rigid joints.

Price - £9
The Structural Engineer
Correspondence Torsional Behaviour of Structural Rectangular Hollow Sections by J. Marshall

Correspondence Torsional Behaviour of Structural Rectangular Hollow Sections by J. Marshall

We wish to compliment the author for his thorough analytical and experimental investigation.

Price - £9
The Structural Engineer
Synopsis A Graphical Interpretation of of the Deflexion Theory for Suspension Bridge Analysis by P.T

Synopsis A Graphical Interpretation of of the Deflexion Theory for Suspension Bridge Analysis by P.T

The graphical procedure presented in this paper is an extension of the linearized deflexion theory for suspension bridge analysis which brings the theory more into the region of preliminary design. By construction of graphical models to represent equations derived by a reformulation of the classical deflexion theory approximate values of deflexion, bending moment and hanger load distribution across the span can be quickly calculated for all typical loading cases.

Price - £9