Author: R. Plank
2 January 2018
Article (PDF)
An IStructE account gives you access to a world of knowledge. Create a profile to receive details of our unique range of resources, events and training.
R. Plank
Free
Heat-induced explosive spalling in fire poses a credible risk to concrete structures, and has received considerable research attention in recent decades. However, no validated guidance to enable the design of concrete mixes to prevent spalling, nor any established, widely verified, repeatable test methods are yet available to confidently quantify or demonstrate spalling resistance for a particular mix in a given application. As a result, no models yet exist that can predict spalling with sufficient confidence to be used in design. This paper summarises contemporary research on heat-induced concrete spalling, with particular emphasis on design for fire of concrete-lined tunnels. The topic is also relevant for modern concrete buildings. A novel, repeatable and economical testing method to reduce project risk by quantifying the propensity of concrete mixes for spalling under a range of different thermal and mechanical conditions is described. The intent of this paper is to present the limitations of knowledge to enable design for heat-induced spalling, and to highlight research currently under way to overcome some of the issues faced in practice.
All the articles from the January 2018 issue.
Structural fire engineering is often adopted in large open-plan structuressuch as airport terminals, railway stations, etc., where the low fire risk can be directly conceived and a structural fire analysis may bring significant savings on structural fire protective coatings. In some recent cases, structural fire engineering approaches have also been applied to landmark high-rise buildings in China. This paper introduces four different examples of such methods with varying motivations, approaches and ultimate design schemes, to provide readers with an insight into the commercial application of structural fire engineering in China.