Technical Guidance Note (Level 2, No. 12): Introduction to steel portal frames

Author: The Institution of Structural Engineers

Date published

29 May 2014

First published: 29 May 2014

Price

Standard: £9 + VAT
Members/Subscribers: Free

Buy Now

Added to basket

Back to Previous

Technical Guidance Note (Level 2, No. 12): Introduction to steel portal frames


The Structural Engineer
Technical Guidance Note (Level 2, No. 12): Introduction to steel portal frames
Date published

29 May 2014

Author

The Institution of Structural Engineers

Price

Standard: £9 + VAT
Members/Subscribers: Free

First published

29 May 2014

Buy Now
Author

The Institution of Structural Engineers

Portal frames are a simple and very common type of framed (or skeleton) structure. Steel portal frames, in particular, are a cost-effective structural system to support building envelopes (such as warehouses and shopping complexes) requiring large column-free spaces. In general, the loads and consequent deformations for these frames are in the plane of the structure, and hence these are a 2D (or plane) frame structure. Due to the practical requirement of having a clear space between the supports of a portal frame, providing in-plane bracing is generally not feasible. Consequently, these frames undergo larger deflections and are prone to sway laterally, even under the vertical loads. The concept of sway frames is addressed in more detail in Technical Guidance Note No. 10 (Level 1) Principles of lateral stability. Thus, in spite of the inherent simplicity of portal frames, many aspects of their analysis, design and detailing require careful consideration.

Portal frames can be made from concrete, timber and even glass but the vast majority, in the UK certainly, are constructed from steel. This Technical Guidance Note gives an introduction to steel portal frames and their preliminary analysis. Steel portal frames usually have pinned bases and moment connections at the column/rafter interface and mid-span apex splice in the rafter. Although there are other forms of portal frame (described in Elastic Design of Single- Span Steel Portal Frame Buildings to Eurocode 3), for the sake of brevity and clarity this note will be dedicated to this particular form.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Additional information

Format:
PDF
Pages:
5
Publisher:
The Institution of Structural Engineers

Tags

Technical Guidance Notes Technical Guidance Notes (Level 2) Technical Guidance Notes Technical Issue 6

Related Resources & Events

The Structural Engineer
Technical Guidance Note (Level 2, No. 18): Design of unreinforced masonry retaining walls

Technical Guidance Note (Level 2, No. 18): Design of unreinforced masonry retaining walls

This Technical Guidance Note is intended to act as an aide to those seeking to design an unreinforced masonry retaining wall. Following this guidance will prevent cracking and ensure that the wall performs as originally intended. The note will not cover the design of reinforced masonry retaining walls and variants of that form. Such reinforcement typically strengthens the wall itself against induced bending stresses and the wall’s geometry will therefore be somewhat different to that of an unreinforced retaining wall. The note will also not discuss the applied actions that a retaining wall will be subjected to, nor the construction of retaining walls. These subjects have previously been covered in the following Technical Guidance Notes: Level 1, No. 8: Derivation of loading to retaining structures and Level 1, No. 33: Retaining wall construction. It is assumed that the reader is familiar with the content of both these notes.

Date - 1 October 2018
Author - C. O'Regan (AECOM)
Price - £0/£9
The Structural Engineer
Technical Guidance Note (Level 2, No. 2): Designing a steel column

Technical Guidance Note (Level 2, No. 2): Designing a steel column

The subject of this guide is the design of columns in simple construction to BS EN 1993-1-1 – Eurocode 3: Design of Steel Structures – Part 1-1: General Rules for Buildings. It covers rolled steel ‘I’ and ‘H’ sections that are acting as columns within a braced steel frame structure.

Date - 1 February 2013
Author - The Institution of Structural Engineers
Price - £0/£9
The Structural Engineer
Technical Guidance Note (Level 2, No. 15): Design of timber posts

Technical Guidance Note (Level 2, No. 15): Design of timber posts

The design of timber posts follows the same principles as the design of vertical structural elements formed from other materials. Extreme fibre stresses or buckling due to applied axial forces are the key components affecting a post’s ability to perform. The major difference is the anisotropic nature of timber, which, for vertical elements, has a significant impact on the assessment of their performance as a structural member. The design of timber elements in the UK, according to current codes of practice, is based on limit state theory. This Technical Guidance Note adopts this approach to describe the design of timber posts. The note assumes that the reader is familiar with the use of coefficient factors prevalent within BS EN 1995-1-1 (Eurocode 5), as described in Technical Guidance Notes Level 1, No. 18 Design of timber floor joists and Level 2, No. 14 Design of unrestrained timber beams.

Date - 1 February 2018
Author - C. O'Regan (AECOM)
Price - £0/£9