Added to basket

Back to Previous

Technical Guidance Notes (Level 1)


The Institution's Technical Guidance Notes have been conceived to provide technical guidance to both undergraduates and those in the early stages of their careers.

Experienced Technicians may also find these notes helpful when looking to develop a greater understanding of structural design.

The notes are intended to be easily accessible and to form the foundation of a personal technical reference library.

Level 1 aims to provide sound foundations from which design skills can be developed, by focusing on basic structural engineering fundamentals.

Articles in this series

The Structural Engineer

This Technical Guidance Note describes the causes of cracking in concrete.

Publish Date - N/A

The Structural Engineer

This guide explains the various methods that can be adopted to ensure that lateral stability to structures is achieved. This note also highlights the need for robustness in structures as it is regarded as an aspect of structural design that can have an impact on strategies adopted for lateral stability. All of the guides in this series have an icon based navigation system, designed to aid the reader.

Access more Technical Guidance Notes through our series homepage .

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note explains the way in which reinforced concrete drawings should be read. In many cases reinforced concrete drawings are more diagrammatic than their general arrangement counterparts and carry with them their own unique set of rules and nomenclature. Note that the guidance provided here is based on European codes of practice; for all other regions the reader is directed to local guidelines on reinforced concrete detailing methods. This technical guidance note does not cover the rules governing the detailing reinforced concrete. That is a far more complex subject which is dealt with in The Institution of Structural Engineers’ publication Standard Method of Detailing Structural Concrete (3rd edition).

Publish Date - N/A

The Structural Engineer

When analysing structures it is important to adopt a methodical approach wherever possible. By breaking down the structure into manageable portions, the complexity of the analysis is reduced and thus becomes easier to control and review. By adopting such an approach, a seemingly insurmountable task becomes a much more approachable one. This Technical Guidance Note is a good practice guide for analysing and designing structures. It explains how structures are given form, modelled, analysed and designed. Mention is made of the need to rationalise the analysis process, but not at the expense of an economic design.

Publish Date - N/A

The Structural Engineer

Elements within a steel frame structure are at risk of buckling under load. If measures are not taken when designing steel elements that recognise this risk, then the likelihood of its failure is significantly increased. This Technical Guidance Note explains how steel elements are restrained against buckling and what the structural engineer should consider when analysing steel structures with respect to buckling resistance.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note describes the concept of biaxial bending of columns, as well as the effect direct bending has on column design. The guidance given here can be applied to columns made from any material, be it steel, concrete, timber or even glass.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note defines the concept of fatigue and how its effects can be countered.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note describes how drawings for structural steelwork are developed and read. They have their own unique set of rules and nomenclature and it is important for engineers to understand all of these rules in order to communicate and interpret the design of steelwork structures.

This guide is split into two sections; the first contains the information a designer of the steel elements provides, whilst the second contains the information a fabricator creates in order to manufacture and construct the steel structure. While one feeds into the other, the level of detail each set of information provides is very different, due primarily to the end result. One is informing the manufacture of the steelwork, while the other focuses on its installation.

Publish Date - N/A

The Structural Engineer

While the advancement of computer based analysis continues to grow exponentially within the field of structural engineering, the tools that are used to analyse structures by hand are no less relevant. Many would argue that such tools are even more vital today than they have ever been if we are to fully understand the output of analysis applications. With this in mind, this Technical Guidance Note describes one of the most powerful analysis tools available: moment distribution.

Moment distribution is a method by which statically indeterminate structures are analysed elastically. It’s based on the relative stiffness of elements that make up a structure and shifts bending moments from one section of the structure to another until they become balanced. Once this balance has been achieved, the forces and bending moments within the structure are modelled.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Publish Date - N/A

The Structural Engineer

Once the concept and scheme for a structure has been settled upon, the initial sizing of the elements that it is made up of commences. This Technical Guidance Note provides a set of hints as to how to initially size elements, prior to carrying out the detailed design. This process allows the engineer to gain an appreciation of the form of the structure and the changes that may be required if element sizes prove to be too onerous following this size estimation process.

Access more Technical Guidance Notes through our series homepage .

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note describes how prestressed precast concrete planks are constructed, specified and installed.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note describes the basic knowledge required to read drawings produced by structural engineers.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note explains the basic principles of below ground drainage for both surface and foul water. Acting as an introduction, it describes the different types of drainage pipes that are available, how they are installed, how they interface with structure, their testing and maintenance.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note concerns the derivation of snow load onto structures. It is based on Eurocode 1: Actions on Structures Part 1-3; General Actions – Snow Loads. With this Eurocode being focused on an action that is sensitive to environmental effects, the UK annex to it plays a significant role, as it makes reference to projected snow falls that are unique to the British Isles. There are a large number of variations and conditions the designer must be aware of when determining snow loads onto structures. As such, the reader is referred to the code text more frequently than in other Technical Guidance Notes.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note concerns lateral loads that are applied to barriers and wheel axle loads from vehicles. Barrier loading is dealt with slightly differently to other forms of imposed loading. The nature of the loading can vary from people leaning against barriers to vehicles colliding with them at speed. Axle loading from vehicles has to be treated somewhat differently to other forms of imposed loading. While it is possible to assume a blanket area load to represent them, it is the point load from each wheel that needs closer attention.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note concerns the assessment of loads that are applied to retaining structures, typically generated from soil. These forces primarily come into play during the design of retaining wall structures, but they can also be found in water retaining structures and storage vessels.All of the guides in this series have an icon based navigation system, designed to aid the reader.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note is an introduction to the assessment of floor vibrations. Since the adventof lighter structures that have longer spanning elements within them, the built in dampening effectbuildings have had historically has become less pronounced. Despite this, floor vibration canbe an overlooked criterion during the design process. This can lead to expensive remedial works being carried out on structures after they have been built, as occupants complain of discomfort due to excessive movements and vibrations.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Publish Date - N/A

The Structural Engineer

This guidance note describes the different types of pile presently in use, the design concepts that are employed when determining their size and depth, how they are constructed and the various tests that can be carried out to assess a pile's integrity.

Publish Date - N/A

The Structural Engineer

The use of masonry dates back to antiquity with evidence of the use of some form of stone masonry originating over 10,000 years ago. This guide introduces the material, focusing on the two most common forms; brick and concrete block.

Publish Date - N/A

The Structural Engineer

This guidance note pays particular attention to partial factors with reference to BS EN 1990: Eurocode – Basis of structural design, to illustrate how extreme events are approached within a code of practice, and explains how the code interprets the application of loads/actions for the design of structures for such events.

Publish Date - N/A

The Structural Engineer

Imposed load is defined as the load that is applied to the structure that is not permanent and can be variable. In Eurocode phraseology, it is described as a 'quasi-permanent variable action'. Please be aware that this note does not cover lateral loads onto barriers, balustrades and axle loads from vehicles. These will be covered in a forthcoming note.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Publish Date - N/A

The Structural Engineer

When developing a scheme for a structure, the choice of floor slab construction is critical to the columns, foundations, walls and overall stability. As such, the floor slab’s form should be selected with care and consideration.

This Technical Guidance Note provides information about a number of common floor construction forms that are currently available. It focuses on concrete based solutions: some acting compositely with steel elements, such as reinforcement and/or steel members. Descriptions of each flooring system together with their key features (which cover topics such as buildability, aesthetics and compatibility of other elements e.g. building services) are included. Please be aware that floor slab technology is continually evolving and that new floor slab solutions continue to become available as a result.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Publish Date - N/A

The Structural Engineer

A description of the various forms of retaining walls currently in use. This note is primarily concerned with structures that retain soil.

Publish Date - N/A

The Structural Engineer

This technical guidance note is an introduction to glass as a structural material. It aims to describe glass in terms of its properties, how it reacts when subjected to various forces and the methods currently being explored and adopted by structural engineers when designing structural glass elements.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note concerns the concept of notional loading, which the Eurocodes classifies as Equivalent Horizontal Forces. These are loads that exist due to inaccuracies and imperfections introduced into the structure during its construction. The following text explains how notional lateral loads are incorporated into the design process.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note focuses on the visualisation of structures. It is essential for structural engineers to be able to express their ideas clearly through their designs. Visualising structures in the appropriate way enhances the design process - not least because drawing the complex elements of a structure while carrying out calculations, can help to identify possible construction issues/problems at an earlier stage than may otherwise be possible. This guide explains two techniques that are commonly used to draw in three dimensions and thus aid the structural engineer in visualising the structures they design.All of the guides in this series have an icon based navigation system, designed to aid the reader.

Publish Date - N/A

The Structural Engineer

The importance of accurate information and interpretation of soil conditions on a site cannot be understated. The chosen form of any sub-structure is entirely dependent upon what the site investigations have revealed. It is typically up to the structural engineer, with the aid of geotechnical engineers and specialists, to determine the extent of this investigation and interpret its results. This Technical Guidance Note explains the various methods of site investigation and can be considered a partner to the previously published note on 'soil bearing capacity'.

Publish Date - N/A

The Structural Engineer

Recently, the technology behind post fix anchors has become increasingly complex. This guidance note has been developed in order to provide some clarity around the multitude of options that can be presented to a designer required to specify anchors.

Publish Date - N/A

The Structural Engineer

An introduction to ground bearing floor slabs, touching on the slabs' reinforcement by considering both historical use of mesh as well as current plastic and steel fibre reinfocement methods.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note concerns the derivation of wind load onto structures. It is based on Eurocode 1: Actions on Structures Part 1-4; General Actions – Wind Actions. With this being focused on a load that is sensitive to the environment, the UK Annex to the Eurocode plays a significant part as it makes reference to wind speeds that are unique to the British Isles. There are a large amount of variations and conditions the designer must be aware of when determining wind loads on structures. It is for this reason that the reader is referred to the code text more often than in other notes in this series.

Publish Date - N/A

The Structural Engineer

In his editorial of 18th October 2011, Managing Editor Lee Baldwin heralded the introduction of a series of 'Technical Guidance Notes'. Sarah Fray - Director: Engineering and Technical Services provides an introduction to the series.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note acts as an introduction to the core design concepts that are found within the current codes of practice used within the UK. It also explains the relationship between each of the other guidance notes and how the reader is to navigate and use them. All of the subsequent notes make reference, be they direct or implied to this core guide; it is therefore imperative that anyone seeking to use these guides must be fully conversant with what is contained within this note.

Publish Date - N/A

The Structural Engineer

One of the most common structural elements is the timber floor joist. This is normally found in residential properties, but can also be seen in medium sized commercial developments. This Technical Guidance Note will explain the principles behind the design of timber floor joists and provide a worked example. All of the advice given will be in accordance with BS EN 1995-1-1 Eurocode 5: Design of Timber Structures – Part 1-1: General – Common rules and rules for buildings.

(This article was updated in October 2016 to reflect errata issued since its original publication.)

Publish Date - N/A

The Structural Engineer

The twisting of elements within structures due to eccentric loading is something that is best avoided as far as is possible. Such actions develop torsion forces in elements against which they were not designed to withstand. This Technical Guidance Note concerns this buildability and detailing issue that structural engineers must become familiar with in order to avoid otherwise unforeseen problems that can lead to significant remedial works on site and in some cases failures.

Publish Date - N/A

The Structural Engineer

When designing foundations for a structure there is a need to determine the bearing capacity of the soil. This applies to all forms of foundation, from a simple pad footing to a pile cap. The bearing stress capacity of the soil is the key variable that has a direct impact on the form and size of foundations. This Technical Guidance Note explains the principles of how bearing capacity of soils are determined and how it impacts on the design of foundations.

Publish Date - N/A

The Structural Engineer

This Technical Guidance Note concerns the derivation of dead loads. This is a core guidance note and as such, subsequent notes will make reference to this one. It is therefore important to understand the contents of this note before attempting to digest any of the others.

Dead load is defined as the weight of static materials contained with a structure. This includes the self weight of the structure as well as the materials it is supporting that are fixed to it. Within Eurocode 1 it is defined as a 'Permanent Action'.

Publish Date - N/A